Loading...
1175 ATLANTIC BLVD - STRUCTURAL CALCULATIONS `L JOB TITLE Atlantic Beach Urban Farms, LLC '��.., ATLANTIC 141010 BEACH, FL //, JOB NO. SHEET NO. KI , ROUGH BROTHERS,INC. CALCULATED BY :vi. ALY, PE DATE CHECKED BY DATE E Ir, STRUCTURAL CALCULATIONS FOR Atlantic Beach Urban Farms, LLC ATLANTIC BEACH, FL `tootenttttt PEA SPURS No 84323 yk * : • STATE F :14 • .R1p••. . ��� i0/30i F / #.4 - 88g 04. I : C0A SET * 1 1 I F Ii I I L 11 i 1■' 1 I I 1 • Or I I a JOB TITLE Atlantic Beach g RB1 ,,,,,..., �„ JOB NO. 141.0.10 SHEET NO. •i ROUGH BROTHERS,INC. CALCULATED BY DATE CHECKED BY DATE I Code Search Code: Florida Building Code 2010 Occupancy: lir Occupancy Group= B Business Risk Category & Importance Factors: Risk Category= 1 Wind factor= 1.00 Snow factor= 0.80 Seismic factor= 1.00 IIType of Construction: — Fire Rating: Roof= 0.0 hr II. Floor= 0.0 hr L.: Building Geometry: Roof angle (0) 6.00/12 26.6 deg Building length(L) 108.0 ft Least width (B) 31.5 ft Mean Roof Ht (h) 21.0 ft Parapet ht above grd 0.0 ft Minimum parapet ht 3.0 ft T. 111 Live Loads: Roof 0 to 200 sf: 18 psf it 200 to 600 sf: 21.6-0.018Area,but not less than 12 psf over 600 sf: 12 psf IF Floor: Typical Floor 50 psf Partitions 15 psf ' 111 Corridors above first floor 80 psf Lobbies&first floor corridors 100 psf Balconies(exterior)-same as occupa 50 psf I I t • y I ..d116. JOB TITLE Atlantic Beach RBI .,..., ..„'„ JOB NO. 141010 SHEET NO. ,- ROUGH BROTHERS,INC. CALCULATED BY DATE �_ CHECKED BY DATE I Wind Loads : ASCE 7 - 10 Ultimate Wind Speed 120 mph Nominal Wind Speed 93 mph Risk Category I Exposure Category C Enclosure Classif. Enclosed Building I. Internal pressure +/-0.18 Directionality (Kd) 0.85 Kh case 1 0.911 Kh case 2 0.911 I Type of roof Monoslope A(z) z - Speedup Topographic Factor (Kzt) •'1(z) Topography Flat x(upvind) x(dowanwirnd] Hill Height (H) 80.0 ft H12 Half Hill Length(Lh) 100.0 ft ..*.. H Actual H/Lh = 0.80 ! 1 H./2 Use H/Lh = 0.50 Modified Lh = 160.0 ft ESCARPMENT From top of crest:x= 50.0 ft I Bldg up/down wind? downwind V(Z) Z . H/Lh= 0.50 K, = 0.000 Speed-up x/Lh= 0.31 K2= 0.792 V(Z) x(upwind) jg x(downwind) -,,,, z/Lh= 0.13 K3= 1.000 i {AMA At Mean Roof Ht: j Ann H Kzt=(1±K,K2K3)"2= 1.00 ,., �o.a • 'r.._.. o 2D RIDGE or 3D AXISYMMETRICAL HILL Gust Effect Factor Flexible structure if natural frequency<1 Hz(T>1 second). h= 21.0 ft - However,if building h/B<4 then probably rigid structure(rule of thumb). B= 31.5 ft h/B= 0.67 Rigid structure I /z(0.6h)= 15.0 ft G = 0.85 Using rigid structure default Rigid Structure Flexible or Dynamically Sensitive Structure 3 é= 0.20 Natural Frequency (r),)= 0.0 Hz C = 500 ft Damping ratio(R)= 0 Zmin= 15 ft /b= 0.65 c= 0.20 /a= 0.15 g0, 9v= 3.4 Vz= 101.3 Lz= 427.1 ft N, = 0.00 Q= 0.93 Rn= 0.000 I lz = 0.23 Rh= 28.282 q= 0.000 h= 21.0 ft G= 0.89 use G=0.85 RB = 28.282 r)= 0.000 Ri_= 28.282 r)= 0.000 9R = 0.000 R = 0.000 G = 0.000 • . 1 it it:H. JOB TITLE Atlantic Beach .//t\. RBI JOB NBC:. 141010 SHEET NO. ,�--�„ CALCULATED Y DATE ROUGH BROTHERS,INC. CHECKED BY DATE t.: Enclosure Classification Test for Enclosed Building: A building that does not qualify as open or partially enclosed. Test for Open Building: All walls are at least 80%open. Ao? 0.8Ag Test for Partially Enclosed Building: Input Test Ao 0.0 sf Ao ? 1.1Aoi YES Ag 0.0 sf Ao>4'or 0.01Ag NO Aoi 0.0 sf Aoi/Agi s 0.20 NO Building is NOT Agi 0.0 sf Partially Enclosed Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following: Ao? 1.1Aoi Ao> smaller of 4'or 0.01 Ag Aoi/Agi_< 0.20 Where: Ao=the total area of openings in a wall that receives positive external pressure. Ag=the gross area of that wall in which Ao is identified. Aoi=the sum of the areas of openings in the building envelope(walls and roof)not including Ao. • Agi=the sum of the gross surface areas of the building envelope(walls and roof)not including Ag. i Reduction Factor for large volume partially enclosed buildings(Ri) : If the partially enclosed building contains a single room that is unpartitioned,the internal pressure coefficient may be multiplied by the reduction factor Ri. i Total area of all wall&roof openings (Aog): 0 sf Unpartitioned internal volume (Vi): 0 cf Ri= 1.00 x Altitude adjustment to constant 0.00256 (caution -see code) : Altitude= 0 feet Average Air Density= 0.0765 Ibm/ft3 • Constant= 0.00256 e r a ,a . I RBI iP"s°2 All.. JOB TITLE Atlantic Beach --- -..:■1, JOB NO. 141010 SHEET NO. c ROUGH BROTHERS,INC. CALCULATED BY DATE CHECKED BY DATE Wind Loads - MWFRS h_60' (Low-rise Buildings) Enclosed/partially enclosed only Kz= Kh(case 1)= 0.91 Edge Strip (a)= 3.2 ft Base pressure(qh)= 28.6 psf End Zone (2a)= 6.3 ft GCpi = +/_0.18 Zone 2 length = 15.8 ft 1 Wind Pressure Coefficients CASE A CASE B 6=26.6 deg Surface GCpi w/-GCpi w/+GCpi GCpf w/-GCpi w/+GCpi 1 0.55 0.73 0.37 -0.45 -0.27 -0.63 2 -0.10 0.08 -0.28 -0.69 -0.51 -0.87 3 -0.45 -0.27 -0.63 -0.37 -0.19 -0.55 4 -0.39 -0.21 -0.57 -0.45 -0.27 -0.63 5 0.40 0.58 0.22 6 -0.29 -0.11 -0.47 1E 0.73 0.91 0.55 -0.48 -0.30 -0.66 2E -0.19 -0.01 -0.37 -1.07 -0.89 -1.25 3E -0.58 -0.40 -0.76 -0.53 -0.35 -0.71 4E -0.53 -0.35 -0.71 -0.48 -0.30 -0.66 5E 0.61 0.79 0.43 6E -0.43 -0.25 -0.61 Ultimate Wind Surface Pressures (psf) 1 1 20.8 10.6 -7.7 -18.0 2 2.3 -8.0 -14.6 -24.8 3 -7.6 -17.9 -5.4 -15.7 4 -6.0 -16.3 -7.7 -18.0 5 16.6 6.3 6 -3.1 -13.4 1E 25.9 15.6 -8.6 -18.8 2E -0.3 -10.6 -25.4 -35.7 1 3E -11.6 -21.8 -10.0 -20.3 4E -10.1 -20.4 -8.6 -18.8 5E 22.6 12.3 6E -7.1 -17.4 _ 1 Parapet Windward parapet= - 0.0 psf (GCpn= +1.5) Windward roof Leeward parapet = 0.0 psf (GCpn =-1.0) overhangs= 20.0 psf (upward)add to I windward roof pressure Horizontal MWFRS Simple Diaphragm Pressures (psf) Transverse direction (normal to L) wMOvvwxuWAN LEElfA RD Interior Zone: Wall 26.8 psf t t ITEIRTCAL R I oof 9.9 psf End Zone: Wall 36.1 psf gl^ /-.---'�^`` �`` Roof 11.3 psf [S., RD R.rrrrrz Longitudinal direction (parallel to L) - - • »W.W.W.,r»W•••""eMeroWeWe, . Interior Zone: Wall 19.7 psf TB.AN3VER3R ELEVATION End Zone: Wall 29 7 psf ►, Lei a n vcoa l u l l { I VEICIMAL crm7Z2 d LA -,,,,,:ez.e.r.rmzermw.,e.F.r.".7.w.r",- i LONGITUDINAL ELEVATION I I.,,,` JOB TITLE Atlantic Beach ir RBI ''"'' f�,, JOB NO. 141010 SHEET NO. ROUGH BROTHERS,INC. CALCULATED BY DATE d CHECKED BY. .-. DATE Location of MWFRS Wind Pressure Zones ii - 3 ZONE 2:lessor of 3 6 4 0.5 B or 2.5 h \.` f� 2 If 2 is negative 4E 3` 4E 3E �i`�/�f f' ��//i�i% � 2E %M� lE 5E .^✓a lE • CASE A �4 DIRECTION CASE B RANGE WIND DIRECTION lip • RANG NOTE: Torsional loads are 25% of zones 1 -6. See code for loading diagram. t..,. 6.- ASCE 7 -99 and ASCE 7-10 (& later) i 6 4 3 ZONE 2:lessor of OS B or 2.5 h 4 3 -��y�' -2 If 2 is negative 4E 3E 2 .-Za -- '--.._, ..111111466„ 5 - g PP 1 IE WIND DIRECTION Transverse Direction Longitudinal Direction NOTE:Torsional loads are 25% of zones 1 -4. See code for loading diagram. ASCE 7 02 and ASCE 7 05 I if S I I -•111141. JOB TITLE Atlantic Beach RBI EL_TAII JOB NO. 141010 SHEET NO. ROUGH BROTHERS,INC. CALCULATED BY_ _ DATE CHECKED BY DATE Snow Loads : ASCE 7-10 Nominal Snow Forces Roof slope = 26.6 deg Horiz.eave to ridge dist(1N)= 15.8 ft Roof length parallel to ridge(L)= 108.0 ft Type of Roof Hip and gable w/trussed systems Ground Snow Load Pg = 0.0 psf Risk Category = I Importance Factor I = 0.8 Thermal Factor Ct = 1.00 Exposure Factor Ce = 1.0 Pf=0.7*Ce*Ct*I*Pg = 0.0 psf . Unobstructed Slippery Surface yes • Sloped-roof Factor Cs = 0.67 Balanced Snow Load Ps = 0.0 psf Rain on Snow Surcharge Angle 0.32 deg Code Maximum Rain Surcharge 5.0 psf Rain on Snow Surcharge = 0.0 psf Ps plus rain surcharge = 0.0 psf Minimum Snow Load Pm = 0.0 psf NOTE:Alternate spans of continuous beams Uniform Roof Design Snow Load = 0.0 psf and other areas shall be loaded with half the design roof snow load so as to produce the greatest possible effect-see code. I 1 I I I 1 I • I I " .... JOB TITLE GROWING UP GREENS LLC ROUGH JOB NO.ATLANTIC BEACH,FL IF 141010 _-____._ SHEET NO. —._ BROTHERS INC. CALCULATED BY M.ALY,PE DATE CHECKED BY DATE VI. Seismic Loads: ASCE 7-05 i Occupancy Category: II r ' Importance Factor(I): 1.00 kSite Class: D • Ss(0.2 sec)= 14.30%g Zip Code Search for Ss&S I; SI(1.0 sec)= 6.00%g bnp://egint.cr.usgs.gov/ea-men/hnnVzipcodc.hen1 Fa= 1.600 Sins= 0.229 Sds= 0.153 Design Category= A Fv= 2.400 Sm 1= 0.144 Sd I= 0.096 Design Category= B Seismic Design Category= B Number of Stories: I Structure Type: Not applicable Horizontal Struct Irregularities: No plan Irregularity Vertical Structural Irregularities: No vertical Irregularity Flexible Diaphragms: No Building System: Building Frame Systems Seismic resisting system: Ordinary steel concentrically braced frames System Building Height Limit: Height not limited Actual Building Height(hn)=21.0 ft DESIGN COEFFICIENTS AND FACTORS Response Modification Factor(R)= 3.25 System Over-Strength Factor(Co)2 = 2 Deflection Amplitication Factor(Cd)= 3.25 Sds 0.153 Sd I= 0.096 p=redundancy coefficient Seismic Load Effect(E)= p QE+1-0.2Sps D = P Qe +1- 0.031 D QE=horizontal seismic force Special Seismic Load Effect(E)= Co 2 QE+/-0.2Sps D =2.0 QE +/- 0.031 D D=dead load PERMITTED ANALYTICAL PROCEDURES Index Force Analysis(Seismic Category A only) Method Not Permitted . Simplified Analysis Use Equivalent Lateral Force Analysis Equivalent Lateral-Force Analysis - Permitted Building period coef (CT)= 0.020 Cu= 1.70 Approx fundamental period(Ta)= Crhn"= 0.196 sec x=0.75 Tmax=CuTa= 0.334 User calculated fundamental period(T)= 6 sec Use T= 0.334 Long Period Transition Period(TL)= ASCE7 map= 6 Seismic response coef.(Cs)= SdsIIR= 0.047 need not exceed Cs= Sd I I/RT. 0.089 but not less than Cs= 0.010 USE Cs= 0.047 Design Base Shear V=0.047W Model&Seismic Response Analysis -Permitted(see code for procedure) IALLOWABLE STORY DRIFT Structure Type: All other structures IAllowable story drift= 0.020hsx where hsx is the story height below level x I I I r' JOB TITLE GROWING UP GREENS LLC f ATLANTIC BEACH,FL JOB NO. 141010 SHEET NO. CALCULATED BY M.ALY,PE DATE DATE CHECKED BY DATE DATE VIX. Sample Calculation of Nodal Loads on Poly Arch I 1-DL Node X(fL) Y(ft.) - Tspacing(ft.) Load(psf) V(Ibs) 3 2.740 1.370 6.0 It 5 82 10 5.260 2.630 6.0 ft 5 158 9 13.540 6.770 6.0 ft 5 406 - 55 4.250 2.125 6.0 ft 5 128 2 I. -LL Node X(ft.) Y(ft.) T.spacing Load(psf) V(Ibs) 3 2.740 1.370 6.0 R 12.00 197 10 5.260 2.630 6.0 ft 12.00 379 9 13.540 6.770 6.0 ft 12.00 975 55 4.250 _ 2.125 _ 6.0 ft 12.00 306 3-WL1 MI Node X(ft.) Y(ft.) T.spacing Load(psf) V(Ibs) 11(Ibs) 1 2.740 1.370 6.0 ft -0.24 -4 -2 2 5.260 2.630 6.0 ft -0.24 -7 -4 T 3 6.770 3.385 6.0 It -0.24 -10 -5 3 6.770 3.385 6.0 ft -34.23 -1390 -695 4 8.500 4.250 6.0 ft -34.23 -1746 -873 5 6.770 3.385 6.01t -34.23 -1390 -695 5 6.770 3.385 6.0 ft -19.45 -790 -395 6 5.260 2.630 6.0 ft -19.45 -614 -307 a 7 5.480 2.740 6.0 ft -19.45 -639 -320 `t 8 5.260 2.630 6.0 ft -19.45 -614 -307 W 9 13.540 6.770 6.0 ft -19.45 -1580 -790 J 10 8.500 4.250 6.0 ft -19.45 -992 -496 _ 11 13.540 6.770 6.0 ft -19.45 -1580 . -790 12 5.260 2.630 6.0 ft -19.45 -614 -307 13 2.740 1.370 6.0 ft -19.45 -320 -160 4-WL2 Node X(ft.) Y(ft.) T.spacing Load(psf) YQbs) H(Ibs) 1 2.740 1.370 6.0 ft 10.06 165 83 p 2 5.260 2.630 6.0 ft 10.06 317 159 7- 3 6.770 3.385 6.0 ft 10.06 409 204 i 3 6.770 3.385 6.0 ft -23.94 -972 I -486 • 4 8.500 4.250 6.0 ft -23.94 -1221 -610 5 6.770 3.385 6.0 ft -23.94 -972 -486 5 6.770 3.385 6.0 ft -9.15 -372 -186 6 5.260 2.630 6.0 ft -9.15 -289 -144 _ N 7 5.480 2.740 6.0 ft -9.15 -301 -150 - 't 8 5.260 2.630 6.0 ft -9.15 -289 -144 _ 5 9 13.540 6.770 6.0 ft -9.15 -744 -372 - uj 1 II 0 8.500 4.250 6.0 ft -9.15 -467 -233 1I 13.540 6.770 6.0 ft -9.15 -744 -372 - 12 5.260 2.630 6.0 ft -9.15 -289 -144 13 2.740 1.370 6.0 ft -9.15 -150 -75 .I I I "...- 4-WL3 Node X(ft.) V(ft) [spacing Load(psf) V(1b5) , 11(lbs) 3 2.740 1.370 6.0 ft -30.89 -508 -254 ....i: 10 5.260 .2.630 6.0 ft -30.89 -975 -487 -= 9 13.540 6.770 6.0 ft -30.89 -2510 -1255 7 r• 55 4.250 2.125 6.0 ti -30.89 -788 -394 ..- ..- I 5-WL4 Node X(ft.) V(f1.) T spacing Load(psf) VOW - [gibs) . 3 2.740 1.370 6.0 ft -20.60 -339 . -169 , 1 f 10 5.260 , 2.630 6.0 ft -20.60 -650 -325 CZ 9 13.540 6.770 , 6.0 ft -20.60 .1674 .837 55 4.250 2.125 _ 6.0 ft -20.60 -525 -263 6-EQ r..7.■ Node X(ft.) Y(ft.) T.spacing Load(psf) H(lbs) I. 3 10 2.740 5260 1.370 _ ft 2.630 6.0 6.0 ft 0.24 4 0.24 7 9 13.540 6.770 6.0 ft 0.24 19 . 55 4.250 2.125 6.0 ft 0.24 6 T 7-BOTTOM CHORD COLLATERAL Node X(11.) V(ftc) "[spacing load(psft 11(lbs) C... 3 2.593 6.0 ft 2.00 31 4 4.922 6.0 ft _ 2.00 59 1111H.4.. ,r r 1 ' ivr Iry Ic•-•-' • 611I 7,.i. P at' .:• FT i .:. IN' rr': me -......._ ii ...- .... I JOB TITLE Growing Up Greens ATLANTIC BEACH,FL JOB NO. 141016 SHEET NO. CALCULATED BY M.ALY,PE DATE DATE CHECKED BY DATE DATE VIX. Sample Calculation of Nodal Loads on A-Frame 1-DL • Node X(ft.) Y(ft.) I-.spacing(ft.) Load(psf) 1'(Ibs) 3 2.030 1.015 12.0 ft 8 195 10 4.365 2.183 12.0 R 8 419 9 4.670 2.335 12.0 ft 8 448 55 4.440 2.220 12.0 ft 8 426 7 2.105 1.053 12.0 0 8 202 2-LL it Node X(ft.) Y(ft.) T.spacing Load(psf) V(Ibs) III3 1.815 0.908 12.0 0 12.00 261 10 3.903 1.952 12.0 ft 12.00 562 9 4.176 2.088 12.0 R 12.00 601 55 3.970 1.985 12.0 ft 12.00 572 7 1.882 0.941 12.0 ti 12.00 271 3-WL1 Node X(ft.) Y(ft.) T.spacing Load(psf) V(Ibs) Il(Ibs) 3 1.815 0.908 12.00 2.30 50 25 C -' 10 3.903 1.952 12.0 11 2.30 108 54 _ 9 4.176 2.088 12.0 ft 2.30 115 58 55 3.970 1.985 12.0 ft 2.30 110 55 - .1' ril 7 1.882 0.941 12.0 ti 2.30 52 26 i 3 1.815 0.908 12.0 ft -7.60 -166 -83 C 10 3.903 1.952 12.0 ft -7.60 -356 -178 Q 9 4.176 2.088 12.0 0 -7.60 -381 -190 55 3.970 1.985 12.0 ft -7.60 -362 -181 W 7 1.882 0.941 12.0 ft -7.60 -172 -86 -a 4-WL2 Node X(ft.) Y(ft.) T.spacing Imad(pSf) V(Ibs) - H(Ibs) 3 1.815 0.905 12.0 0 -8.00 -174 -87 C _ i 10 3.903 1.952 12.0 ft -8.00 -375 -187 _ 5 9 4.176 2.088 12.0 R -8.00 -401 -200 p 55 3.970 1.985 12.0 0 -8.00 381 -191 ? 7 1.882 0.941 12.0 ft -8.00 -181 -90 i 3 1.815 0.908 12.0 ft -17.90 -390 -195 10 3.903 1.952 12.0 ft -17.90 -838 -419 -1', 9 4.176 2.088 12.0 ft -17.90 -897 -448 55 3.970 1.985 12.0 ft •17.90 -853 -426 ;4 7 1.882 0.941 12.0 ft -17.90 -404 -202 - -1 J j r' a mi t • 1 it 3-WL1 Node X(ft.) \(ft.) T.spacing Load(psf) V(Ibs) H(lbs) 3 1.815 0.908 12.0 ft -14.60 -318 -159 CG 10 3.903 -1.952 12.0 ft -14.60 -684 -342 P. .0- 9 4.176 - 2.088 12.0 ft -14.60 -732 -366 ta 55 3.970 1.985 12.0 ft -14.60 -696 -348 Z 1: 11[ 7 1.882 0.941 12.0 ft -14.60 -330 -165 3-WL1 Node X(ft.) Y(ft.) T.spacing load(psf) Y(lbs) H(lbs) 1 12.0 ft -24.80 -540 -270 rx ..1. 10 3.903 1.952 12.0 ft -24.80 -1162 -581 ",-- - ..-- 9 4.176 2.088 12.0 ft -24.80 , -1243 -621 a 55 3.970 1.985 12.0 ft -24.80 -1181 -591 ,_. 7 1.882 0.941 12.0 ft -24.80 -560 -280 '...- ..-- I 8-EQ Node X(ft.) Y(ft-) T.spacing Load(psf) H(Ibs) 3 1.815 0.908 12.0 ft 0.38 8 If 10 3.903 1.952 12.00 0.38 0.38 18 9 4.176 2.088 12.00 19 55 3.970 1.985 12.0 ft 0.38 18 7 1.882 0.941 12.0 It _ 0.38 8 9-BOTTOM CBORD COLLATERAL ...- Node X(ft.) (ft.) T.spacing Load(psf) 11(lbs) 3 2.635 , 12.0 0 2.00 63 4 5.040 12.011 2.00 121 5 8.070 120 ft 2.00 194 I $ , 1 $ I I E I ... ',.... It . tow Purlin of Poly arch gm Purlin Design Input Data YI Member Section 2x2x15ga A= Tube Width 2 in e a � •/ B = Tube Length 2 in j • R = Corner Inner Radius 0.0938 in j • t= Thickness 0.072 in Z. ; _-_____.4.________, f. •-" b B KLx= Buckling around x-x 6 ft $ • KLy= Buckling around x-x 6 ft E = Modulus of Elasticity 29500 ksi •-- J Fy = Yield Stress 50 ksi y G = Shear Modulus 11300 ksi o A Calculated Parameter I Applied Forces 1- Properties of 900 corner M 0.00001 kip.ft r= R + t/2, Centerline of Dimension 0.130 in P 0.65025 kips u = a. r/2, Arc Length 0.204 in c=0.637.r Distance of c.g. from center 0.083 in 2-Flat widths of flanges and webs Flat width of Dim. a=A- (2.r+t) 1.6684 in Flat width of Dim. b= B - (2.r + t) 1.6684 in Calculation of lx Element L, Length (in) Y, Distance to the center (in) L xY` lx' Flanges 2.a 3.3368 B/2 - t/2 0.964 3.1009 0.0000 Web 2.b 3.3368 0 0 0.0000 0.7740 Corners 4.0 0.816 b/2 + c 0.917 0.6857 0.0000 Sum 7.4892 1.8809 3.7865 0.7740 Calculation of ly Element L, Length (in) X, Distance to the center (in) L x X2 ly' Flanges 2.a 3.3368 0 0 0.0000 0.7740 Web 2.b 3.3368 A/2 -t/2 0.964 3.1009 0.0000 Corners 4.0 0.816 a/2 + c 0.917 0.6857 0.0000 Sum 7.4892 1.8809 3.7865 0.7740 Section Properties I A L x t 0.5392 in2 Ix tx ( LxY2 +lx') 0.3284 in4 ly t x (L x X2+ly') 0.3284 in4 Sx lx /(B/2) 0.3284 in.t Sy I /(A/2) 0.3284 in'5 1 r x (lx/A)°5 0.7804 in ry (ly/A)°,5 0.7804 in I I 'T iric Lc L.7 I Nominal Buckling Stress KLX/r, 92.2660 K Ly/ry 92.2660 KUr 92.2660 Fe 112. E/(KL/r)2 34.2009 ksi ::: l,, (Fy/Fe)°5 1.2091 Fn 27.1160 ksi C Effective Area effective width of compression flange w/t=a/t 23.1722 X X 1.052/(k)°5 x(w/t) x (Fn/E)05 0.3695 r - (1-0.22/X)/X _ 1.0950 ae 1.6684 in effective width of web element w/t= b/t _ 23.1722 I 1.0521(k)°5 x (w/t) x (Fn/E)0'5 _ 0.3695 t5: r (1-0.22/X)/?. 1.0950 be 1.6684 in Allowable Axial Load ::: Ae Ae =A-2 x t x[(a-ae) + (b-be)] 0.53922321 in2 Pn Pn=Ae X Fn 14.6215813 kips S2c .. 1.8 Pa = Pn inc 8.1231 kips Check Compression Stresses Loads from Wind? Cbl I Cb1=(P/Pa) NO 0.0800 Ir 1 _ Allowable Stress Unity 1 0.0800 Section is OK Y f Computing of MnX By using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: Element L, Length (in) y, Distance to top fiber(in) L.y L.y2 C. Flanges ae 1.6684 t12 0.036 0.0601 0.0022 Web 2.b 3.3368 B/2 1 3.3368 3.3368 C. Corners 2.0 0.40780564 c+t/2 0.118683 0.0484 0.0057 T. Flanges ae 1.6684 B-t/2 1.964 3.2767 6.4355 T.Corners 2.0 0.40780564 B-c 1.917 0.7819 1.4991 Sum 7.4892 5.0360 7.5039 11.2794 yag, L.y/L 1.0020 Z=R+t 0.1658 in WI illi The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation I Check the effectiveness of the Web I fi (yc9-Z)Fy/yc9 41.7262 ksi I fz -(B-yc9-Z)Fy/yc9 -41.5306 ksi Y f2/fi -0.9953 k 4+2(1-y,)3+2(1_W) 23.8784 h/ belt 23.1722 I 1.0521(k)015 x(h/t) x(f1/E)°'5 0.1876 r (1-0.22/a.)/X -0.9199 be 1.6684 in b1 be/(3-W) 0.4176 in b2 0.8342 in b,+b2 _ 1.2518 in 2 cab I 2(1/12)(b)3 0.7740 in4 S(Ly2) 11.2794 in4 (-)(SL)(Ycy)2 7.5186 in4 1'x 4.5348 in4 Ix=1'x t 0.3265 in4 Sex=1x/Ycg 0.3259 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 0.3344 in4 Sf fullS, 0.3284 in4 L„ 0.36Cbrz.(E I.G.j)°5/(Fy. S1) 34.7430 ft Fe' Cbn.(E I.G.j)0.5/(L. Sf) 804.2367 ksi I Allowable Bending Moment I Mnx 1.3578 kip.ft nb 1.67 - Ma = Mnx/)b 0.81303531_ kip.ft I Check Stresses I Cmx 0.6-0.4*M1/M2 0.6000 Loads from Wind? Cbl (P/Pa) + (Cmx Mx/Ma 0.0801 ) 0 Cbz (P/Pa) + (Mx/Ma) 0.0801 Allowable Stress Unity I 1 Cb If((P/Pa) <= 0.15,Cb2,Cb,) 0.0801 Section is OK I .1 I I II F---------- I 1 ilium JOB TITLE Growing Up Greens r ATLANTIC BEACH,FL ROUGH Purlin of A-Frame JOB NO. 141016 SHEET NO. BROTHERS INC. CALCULATED BY M.ALY,PE DATE moinnomm• CHECKED BY DATE filII \M. Purlin Design and Analysis Mechanical Properties ' Fy=Yeild Strength 50.0 ksi ii. I E=Modulus of Elasticity 29000.0 ksi Ob-Bending Factor 1.67 1 I c2 Comp.Factor 1.8 Cm for simple beam 1 R-for Simple Span 0.5 1 IP 1-Valley Purlin(VP-1) Section Wt Ib/ft Area(in') Sepos Se e9 Ix V,(kips) M,(k.in) P.(kips) 6 z 16 ga. 2.395 0.704 1.196 1.196 3.803 3.184 39.393 9.89 LS=Span 12.0 ft Design Forces bb;=Tributary Width 4.37 ft Mmax=(WDL+WL)`bb,`L2/8 3.35 kip.in wP Purlin wt. 0.55 psf Vmax(Wol+WL)'bb,'U2 0.09 kips I wp,=Panels wt. 2.00 psf Rmax=Vmax 0.09 kips w,9=Collateral Load 1.00 psf Flexural Stress,Check-Flexure about x-x Wog=s(wp+wpl+whg) 3.55 psf Flexure Check x-x PASS e WL=Snow(Live)Load 0.00 psf Shear Check x-x PASS W,„=Wind Load 17.90 psf Pw Wind Load(Wind//ridge) 2.0 kips Check Uplift Wind Deflection Check Mm,x=(Ww WDL)'bb`L1/8 1.13 kip.ft ir Sact 5/384'(Wm+W1)•b,„'L4/(E'I,) 0.07 in M =R`Se,s,j Fy 2.49 kip.ft hall L/120 1.20 in M,,,=M rC2b 1.49 kip.ft OK OK DL+WL+LL Combination Pe%n2`E`Ix/(KL)2 1 52.53 kips I ax=1-(c2c'P/Pex) 0.9314742 Eq.6.53 C,=P/P,+Cm M/(ax M,) 0.2934078 It Eq.6.54 C2=P/Pa+M/(Ma) 0.2871594 Eq.6.54 if(P/Pa<=0.15,C2,C,) 0.2934078 OK R 1 Ir L 1 10 . • If,. 1 h a C1 c o 0 r `� ■ a V N o v rrO ryOl h y co O Q O J o 3 AN a 0 -N 0 cis >- m o D J Z 0 F cL 2 N O. CC m ,, m o N m N O N i7 O O O hN n a N CO tom.N cO 2 a` °' a co C N CO CO r co 4 Q co 0 m O) O O m tO:O 'n !h N (0 W CO C) O 0 N 0 L h u U M d CO v N r m o o •— . o N C N a O iu ° a u Z-6 C v c a. 3 I 0 n o f cc N. 1 o C a O as ONO v v/ W E r mc t C m o4 CC p N z v Ni J m co �� ') < p �p • Li Q H�)s...,... )._ _, ,,, o a p '„o�co t 0 co Q Q z° r r • 2 ,-co $ A i v oor- a ct m S oo co tico `"O1 I,- Ciin cb Ei• ,, I, w .,D o I • o . CND . O N 'S. @ . -0 co corms > m ,°� o a on c Qo a Q r' a 1- O, v..r Cl) a _ Cs 1-a) i co- o ER . of 0 e.cr _QN m > co M co ~ r • r pr 0 N O \' Or- o I r C C •N v sr • co nroo r o 3 m I (yam o t .v Ls O N CA C f m m d W m I • , -__ E a ? c U a` it r il illi - Job No Sheet No Rev 141010 Software licensed to Par1TRUSS-POLY ANALYSIS Job Title Atlantic Beach Ref BY M.ALY Date6-23-11 Chd all Client File MAIN BOW.std IDatertime 12-Jan-2007 07:39 Nodes Node X Y Z (ft) (ft) (ft) 3 Illii 5 63.000 16.500 0.000 36 63.000 15.250 0.000 37 63.000 0.500 0.000 59 78.750 26.500 0.000 60 66.750 20.500 0.000 61 70.797 23.500 0.000 62 63.000 15.580 0.000 64 63.000 14.620 0.000 11. . 66 73.375 15.580 0.000 II 67 94.500 16.500 0.000 69 94.500 0.500 0.000 70 90.750 20.500 0.000 71 86.703 23.500 0.000 72 94.500 15.580 0.000 73 94.500 14.620 0.000 74 84.125 15.580 0.000 75 66.150 15.580 0.000 76 69.300 15.580 0.000 77 72.450 15.580 0.000 78 75.600 15.580 0.000 79 78.750 15.580 0.000 80 81.900 15.580 0.000 81 85.050 15.580 0.000 82 88.200 15.580 0.000 83 91.350 15.580 0.000 84 64.575 14.620 _0.000 85 92.925 14.620 0.000 86 89.775 14.620 0.000 87 86.625 14.620 0.000 88 83.475 14.620 0.000 89 80.325 14.620 0.000 90 77.175 14.620 0.000 91 74.025 14.620 0.000 92 70.875 14.620 0.000 93 67.725 14.620 0.000 94 126.000 16.500 0.000 95 126.000 15.250 0.000 96 126.000 0.500 0.000 97 110.250 26.500 0.000 98 122.250 20.500 0.000 99 118.203 23.500 0.000 100 126.000 15.580 0.000 101 126.000 14.620 0.000 102 115.625 15.580 0.000 103 98.250 20.500 0.000 i Print Time/Date.29/04/2014 14-.13 STAAD.Pro V8i 20.07.05.15 Pent Run 1 of 14 S I I 411%.7 Software licensed to Job No Sheet No Rev 141010 Pa^TRUSS POLY ANALYSIS Job Title Atlantic Beach Ref c:. By M.ALY Date-23-11 Chd Client File MAIN BOW.std `Date/Tlme 12-Jan-2007 07:39 Nodes Cont... Node X Y Z (ft) (ft) (ft) 104 102.297 23.500 0.000 105 104.875 15.580 0.000 L,,i 106 122.850 15.580 0.000 107 119.700 15.580 0.000 108 116.550 15.580 0.000 109 113.400 15.580 0.000 110 110.250 15.580 0.000 111 107.100 15.580 0.000 112 103.950 15.580 0.000 113 100.800 15.580 0.000 'a 114 97.650 15.580 0.000 115 124.425 14.620 0.000 1. 116 96.075 14.620 0.000 117 99.225 14.620 0.000 118 102.375 14.620 0.000 119 105.525 14.620 0.000 120 108.675 14.620 0.000 121 111.825 14.620 0.000 122 114.975 14.620 0.000 123 118.125 14.620 0.000 i 124 121.275 14.620 __ 0.000 Beams Beam Node A Node B Length Property' 13 (ft)_ (degrees) j 5 73 37 64 14.120 5 0 74 36 62 0.330 5 0 76 60 35 5.483 2 0 . 77 60 61 5.038 2 0 78 59 61 8.500 2 0 79 62 35 0.920 5 0 80 62 75 3.150 1 90 81 64 36 0.630 5 0 II 82 64 84 1.575 6 0 84 66 60 8.252 3 0 85 66 61 8.329 3 0 86 66 59 12.171 2 0 87 69 73 14.120 7 0 88 72 73 0.960 7 0 89 70 67 5.483 2 0 rit 90 70 71 5.037 2 0 91 59 71 8.500 2 0 92 72 67 . 0.920 7 0 Print TimedDate 29/04/2014 14 13 STAAD.Pro V8i 20.07.05.15 Print Run 2 of 14 I 2 ,,,,,,.._., Job No Sheet No Rev - 141010 _. ,-.- imp Software licensed to PartTRUSS-POLY ANALYSIS ,� Job Title Atlantic Beach Ref •1 By M.ALY Date6-23_11 Chd la Client , File MAIN BOW.std Date/rlme 12-Jan-2007 07:39 Beams Cont... Air Beam Node A Node B Length Property) P (ft) (degrees) NO 97 74 70 8.252 3 0 98 74 71 8.329 3 0 99 74 59 12.171 2 0 100 75 76 3.150 1 90 101 76 77 3.150 1 90 102 77 66 0.925 1 90 103 78 79 3.150 1 90 r. 104 79 80 3.150 1 90 105 80 74 2.225 1 90 106 81 82 3.150 1 90 107 82 83 3.150 1 90 108 83 72 3.150 1 90 109 73 85 1.575 6 0 110 85 86 3.150 6 0 111 86 87 3.150 6 0 112 87 88 3.150 6 0 :111111 113 88 89 3.150 6 0 114 89 90 3.150 6 0 115 90 91 3.150 6 0 116 91 92 3.150 6 0 II 117 92 93 3.150 6 0 118 93 84 3.150 6 0 119 62 84 1.845 4 0 120 84 75 1.845 4 0 121 75 93 1.845 4 0 122 93 76 1.845 4 0 123 76 92 1.845 4 0 124 92 77 1.845 4 0 125 77 91 1.845 4 0 126 91 78 1.845 4 0 127 78 90 1.845 4 0 128 90 79 1.845 4 0 129 79 89 1.845 4 0 130 89 80 1.845 4 0 131 80 88 1.845 4 0 132 88 81 1.845 4 0 133 81 87 1.845 4 0 134 87 82 1.845 4 0 135 82 86 1.845 4 0 136 86 83 1.845 4 0 137 83 85 1.845 4 0 138 85 72 1.845 4 0 139 74 81 0.925 1 90 140 66 78 - 2.225 1 90 141 96 101 14.120 5 0 Print Time/Date:29/04/2014 14 13 STAAD.Pro V8i 20.07.05.15 Pnnt Run 3 of 14 I I Job No Sheet No Rev 141010 A Pa"TRUSS-POLY ANALYSIS Software licensed to rr- Job Title Atlantic Beach Ref BY M.ALY oath-23-11 Chd Client File MAIN BOW.std IDatelnime 12-Jan-2007 07:39 Beams Cont... cT Beam Node A Node B Length Property) 13 (ft) :(degrees) 111. 142 95 100 0.330 5 0 �F 143 98 94 5.483 2 0 144 98 99 5.037 2 0 145 97 99 8.500 2 0 146 100 94 0.920 5 0 I'F. 147 100 106 3.150 1 90 148 101 95 0.630 5 0 149 101 115 1.575 6 0 e- - 150 102 98 8.252 3 0 151 102 99 8.329 3 0 152 102 97 12.171 2 0 153 103 67 5.483 2 0 s . 154 103 104 5.037 2 0 155 97 104 8.500 2 0 156 105 103 8.252 3 0 157 105 104 8.329 3 0 ir- 158 105 97 12.171 2 0 159 106 107 3.150 1 90 160 107 108 3.150 1 90 It--, 161 108 102 0.925 1 90 162 109 110 3.150 1 90 163 110 111 3.150 1 90 164 111 105 2.225 1 90 165 112 113 3.150 1 90 166 113 114 3.150 1 90 167 114 72 3.150 1 90 9 168 73 116 1.575 6 0 169 116 117 3.150 6 0 s 170 117 118 3.150 6 0 • 171 118 119 3.150 6 0 • 117- 172 119 120 3.150 6 0 173 120 121 3.150 6 0 .� 174 121 122 3.150 6 0 175 122 123 3.150 6 0 a--; 176 123 124 3.150 6 0 a 177 124 115 3.150 6 0 ' 178 100 115 1.845 4 0 7 179 115 106 1.845 4 0 180 106 124 1.845 4 0 to.', 124 107 1.845 4 0 182 107 123 1.845 4 0 It 183 123 108 1.845 4 0 a 184 108 122 1.845 4 0 'r 185 122 109 1.845 4 0 186 109 121 1.845 4 0 1 1111 Print Time/Date.29104/2014 14 13 STAAD.Pro V8i 20.07.05.15 Print Run 4 of 14 I Job No Sheet No Rev %111P' 141010 . Software licensed to ParITR - POLY ANALYSIS USS Job Title Atlantic Beach Ref 3 By M.ALY Date6_23_11 Chd Chem File MAIN BOW.sld Date/Time 12-Jan-2007 07:39 roil Beams Cont... Beam Node A Node B Length Property) 13 (ft) (degrees) 187 121 110 1.845 4 0 188 110 120 1.845 4 0 'I'll 189 120 111 1.845 4 0 190 111 119 1.845 4 0 191 119 112 1.845 4 0 I; 192 112 118 1.845 4 0 193 118 113 1.845 4 0 194 113 117 1.845 4 0 195 117 114 1.845 4 0 196 114 116 1.845 4 0 197 116 72 1.845 4 0 198 105 112 0.925 1 90 199 102 109 2.225 1 90 'ill Basic Load Cases Number Name 1 DEAD LOAD 2 LIVE LOAD 3 SNOW LOAD 4 UNBALANCED SNOW 5 DRIFT SNOW 6 WIND A 7 WIND B 8 SEISMIC 9 WIND C 10 WIND D Combination Load Cases IIIIII Comb. Combination L/C Name Primary Primary L/C Name Factor 11 D 1 DEAD LOAD 1.00 12 D+L 1 DEAD LOAD 1.00 2 LIVE LOAD 1.00 13 D+BSL+DSL 1 DEAD LOAD 1.00 3 SNOW LOAD 1.00 5 DRIFT SNOW 1.00 14 D+USL 1 DEAD LOAD 1.00 4 UNBALANCED SNOW 1.00 1 15 D+0.45W1+0.75L 1 DEAD LOAD 1.00 6 WIND A 0.75 2 LIVE LOAD 0.45 • Print Time/Date:29/04/2014 14 13 STAAD.Pro V8i 20.07.05.15 Pont Run 5 0114 l; 1 •i "� Job No Sheet No Rev I 141010 •Software licensed to PartTRUSS-POLY ANALYSIS ...FIAPP fro Job Title Atlantic Beach Ref BY M.ALY Date-23-11 Chd Client File MAIN BOW.std IDaterrime 12-Jan-2007 07:39 Combination Load Cases Cont... er' Comb. Combination L/C Name Primary Primary L/C Name Factor ,....° 16 D+0.45W2+0.75L 1 DEAD LOAD 1.00 ..-7- 7 ~WIND B 0.45 2 LIVE LOAD 0.75 _.,,,= 17 D+0.45W3+0.75L 1 DEAD LOAD 1.00 9 WIND C 0.45 ✓-a 2 LIVE LOAD 0.75 18 D+0.45W4+0.75L 1 DEAD LOAD 1.00 10 _ WIND D 0.45 2 LIVE LOAD 0.75 19 D+0.45W1+0.75BSL+0.75DSL 1 DEAD LOAD 1.00 " 6 WIND A 0.45 -0- 3 SNOW LOAD 0.75 r 0 5 DRIFT SNOW 0.75 20 D+0.45W2+0.75BSL+0.75DSL 1 DEAD LOAD 1.00 7 WIND B 0.45 . 3 SNOW LOAD 0.75 R 7' 5 DRIFT SNOW 0.75 21 D+0.45W3+0.75BSL+0.75DSL 1 DEAD LOAD 1.00 9 WIND C 0.45 r x 3 SNOW LOAD 0.75 5 DRIFT SNOW 0.75 s 22 D+0.45W4+0.75BSL+0.75DSL 1 DEAD LOAD 1.00 10 WIND D 0.45 3 SNOW LOAD 0.75 I. 1 5 DRIFT SNOW 0.75 23 D+0.45W1+0.75USL 1 DEAD LOAD 1.00 6 WIND A 0.45 1, 4 UNBALANCED SNOW 0.75 i 24 D+0.45W2+0.75USL 1 DEAD LOAD 1.00 y 7 WIND B 0.45 re 4 UNBALANCED SNOW 0.75 25 D+0.45W3+0.75USL 1 DEAD LOAD 1.00 ` ti 9 WIND C 0.45 4 UNBALANCED SNOW 0.75 trg 26 D+0.45W4+0.75USL 1 DEAD LOAD 1.00 10 WIND D 0.45 4 UNBALANCED SNOW 0.75 e_.: 27 D+0.525E+0.75L 1 DEAD LOAD 1.00 8 SEISMIC 0.52 �" 2 LIVE LOAD 0.75 ' 28 D+.0.525E+0.75BSL+0.75DSL 1 DEAD LOAD 1.00 or` 8 SEISMIC 0.52 3 SNOW LOAD 0.75 war 5 DRIFT SNOW 0.75 29 D+0.525E+0.75USL 1 DEAD LOAD 1.00 RE Pont Time/Date 29/0412014 14.13 STAAD.Pro V8i 20.07.05.15 Pnnt Run 6 of 14 air I'r hl - Job No Sheet No Rev Y1,•;'• A 141010 •Software licensed to PanTRUSS-POLY ANALYSIS fil;. Job Title Atlantic Beach Ref BY M.ALY Date-23-11 Chd Client File MAIN BOW.s(d 'Date/Time 12-Jan-2007 07:39 1 i• Combination Load Cases Cont... 3 Comb. Combination L/C Name Primary Primary UC Name Factor 8 SEISMIC 0.52 4 UNBALANCED SNOW 0.75 foil 30 0.6D+0.6W1 1 DEAD LOAD 0.60 6 WIND A 0.60 31 0.6D+0.6W2 1 DEAD LOAD 0.60 7 WIND B 0.60 32 0.6D+0.6W3 1 DEAD LOAD 0.60 all 9 WIND C 0.60 33 0.6D+0.6W4 1 DEAD LOAD 0.60 10 WIND D 0.60 34 0.6D+0.7E 1 DEAD LOAD 0.60 8 SEISMIC 0.70 35 COMBINATION LOAD CASE 35 1 DEAD LOAD 0.90 6 WIND A 0.60 36 COMBINATION LOAD CASE 36 1 DEAD LOAD 0.90 7 WIND B 0.60 37 COMBINATION LOAD CASE 37 1 DEAD LOAD 0.90 9 WIND C 0.60 38 COMBINATION LOAD CASE 38 1 DEAD LOAD 0.90 _ 10 WIND D 0.60 Node Loads : 1 DEAD LOAD Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip•lt) (kip'ft) (kip-ft) 35 - -0.082 - - - - - - -0.833 - - - - 59 - -0.256 - - - - id 60 - -0.158 - - - - 61 - -0.406 - - - - j 62 - -0.031 - - - - 66 - -0.059 - - - - 67 - -0.164 - - - - - -1.667 - - - - 70 - -0.158 - - - - 71 - -0.406 - - - - 72 - -0.062 - - - - 74 - -0.059 - - - - 94 - -0.082 - - - - - -0.833 - - - - 97 - -0.256 - - - - 98 - -0.158 - - - - 99 - -0.406 - - - - 100 - -0.031 - - - - • Print Time/Date 29/04/2014 1413 STAAD.Pro V8i 20.07.05.15 Pnnt Run 7 of 14 r r 9 ;1117;3111474 - Job No Sheet No Rev 141010 TRUSS-POLY ANALYSIS API" Software licensed to i: lir Job Title Atlantic Beach Ref By M.ALY Date6-23-11 Chd Client File MAIN BOW.std 'Date/Twee 12-Jan-2007 07:39 Node Loads : 1 DEAD LOAD Cont... Node FX FY FZ MX MY MZ (kip) (kip) tkip) (kip ft) (kip ft i (kip It .i. 102 -0.059 - - 103 - -0.158 - - 104 - -0.406 - •. , 105 - -0.059 - frit :.., Node Loads : 2 LIVE LOAD Node FX FY FZ MX MY MZ r,-.. (kip) (kip) (kip) (kip-ft) (kipft) (kip-ft) 35 - -0.197 - - - .I:- 1....• - -1.856 - - - - 59 - -0.612 - - - - s.l. 60 - -0.379 - - - - L61 - -0.975 - - - - 67 - -0.394 - - - - If - -3.716 - - - - 70 - -0.379 - - - - t' 71 - -0.975 - - - _ 94 - -0.197 - - - _ f: - -1.856 97 98 - -0.612 - - - - - -0.379 - - - - - - - - 99 - -0.975 - - - 103 - -0.379 - - 104 - -0.975 - - - - - . 1F-.! _., :!... Node Loads : 3 SNOW LOAD a; ,... Node FX FY FZ MX MY MZ '. In, (kip) (kip) (kip) (kip ft) (kip ft) (kip ft) 35 -0.000 - - . ,yo 67 - -0.000 - - - 94 - -0.000 - - 4T:S... lip Node Loads : 4 UNBALANCED SNOW Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip-ft) (kip It 59 - -0.000 - - - - 67 - -0.000 - - - _ . , 97 - -0.000 - - - - Print Time/Date:29/04/2014 14:13 •STAAD.Pro V8i 20.07.05.15 Pent Run 8 of 14 lir r Rev - Job No Vipl........td,. .. . Sneel No t 141010 7,,,...,A1 Software licensed to Pan TRUSS-POLY ANALYSIS Job Title Atlantic Beach Ref By M.ALY oats-23-11 Chd Cl eat File MAIN BOW.std Date rime 12-Jan-2007 07:39 II Node Loads : 5 DRIFT SNOW Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip'ft) (kip.ft) 61 - -0.000 - - - - 99 - -0.000 - - - - r._ Node Loads : 6 WIND A Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip ft) (kip-ft) (kip ft) 41.` 35 - 2.673 -0.002 0.004 - - - - 59 - 1.746 - - - 60 -0.004 0.007 - - t.r 61 -0.005 0.010 - - - _ -0.695 1.390 - - - - I 67 - 0.639 - - - 6.609 - - - - 70 0.307 0.614 - - - - 71 0.395 0.790 - 0.695 1.390 - - - - 94 - 3.008 - - - _ 0.160 0.320 - - - - 111 97 - 0.992 - - - - 98 0.307 0.614 - - - - 99 0.790 1.580 - - - - 103 -0.307 0.614 - - - - 104 -0.790 1.580 - - - - Beam Loads : 6 WIND A Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 73 UNI Ibf/ft GX 249.600 - - 74 UNI Ibf/ft GX 249.600 - - - - 79 UNI Ibf/ft GX 249.600 - - - - 81 UNI Ibf/ft GX 249.600 - - -- I 141 UNI Ibf/ft GX 72.000 142 UNI Ibf/ft GX 72.000 - - - _ 146 UNI Ibf/ft GX 72.000 - - _ - 148 UNI Ibf/ft GX 72.000 I • Print Time/Date:29/042014 14 13 STAAD.Pro V8i 20.07.05.15 Print Run 9 of 14 I c I -- '7 Job No Sheet No Rev L 1 141010 • Pa^TRUSS-POLY ANALYSIS Software licensed to C Job Title Atlantic Beach Ref By M.ALY Datr6_23-11 Chd Client File MAIN BOW.std IDaterrime 12-Jan-2007 07:39 Node Loads : 7 WIND B Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kipft) (kip ft) 35 - 1.081 - - - - t-,. 0.083 -0.165 - - - - 59^_ - 1.221 - - - 60 0.159 -0.317 - - - - 61 0.204 -0.409 - - - - o -0.486 0.972 - 67 - 0.301 - - - - S - - 3.422 - - - - 70 0.144 0.289 - - - - 71 0.186 0.372 - - - - 0.486 0.972 - - - - 94 - 1.416 - - - - • 0.075 0.150 - - - - 97 - 0.467 - - - - 98 0.144 0.289 - - - - 99 0.372 0.744 - - - - • 103 -0.144 0.289 - - - - 104 -0.372 0.744 - - - It-T. Beam Loads : 7 WIND B J' Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 73 UNI lbf/ft GX 127.200 - - - - b 74 UNI lbf/ft GX 127.200 - - - - 79 UNI lbf/ft GX _ 127.200 - - - 'm 81 UNI lbf/ft GX 127.200 - - - - 141 UNI lbf/ft GX 195.600 - - - - 142 UNI lbf/ft GX 195.600 - - - . - 146 UNI Ibflft GX 195.600 - - - - 148 UNI lbf/ft GX 195.600 - - - I Print Time/Dale.29/04/2014 1413 STAAD.Pro V8i 20.07.05.15 Print Run 10 of 14 1 I �� Job No Sheet No Rev 141010 Software licensed to PanTRUSS-POLY ANALYSIS Job Title Atlantic Beach Ref 2 By M.ALY Date-23_11 Chd Client Fite MAIN BOW.std IDate/Time 12-Jan-2007 07:39 1 Node Loads : 8 SEISMIC 1 Node FX FY FZ MX MY MZ i (kip) (kip) (kip) (kip-ft) (kip-ft) (kip-ft) 4 35 - -0.014 - - - - 0.004 - - - 59 0.012 - - - - - 6 4 0 0.007 - - - - - 61 0.019 - - - - - 67 - -0.014 - - - - 0.008 - - - - 70 0.007 - • - - - - 71 0.019 - - - - - , 1 94 - -0.014 - - - - ?Y 0.004 - - - - - 97 0.012 - - - - - 98 0.007 - - - - - 99 0.019 - - - 103 0.007 - - - - - 104 0.019 _ - - - - - 3 Node Loads : 9 WIND C j Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip-ft) (kip-ft) 35 - 4.779 - - - - -0.254 0.508 - - - - 59 -0.394 0.788 - - 0.394 0.788 - - - _ 60 -0.487 0.975 - - - - - Prj 61 -1.255 2.510 67 - 9.567 - -0.254 0.508 - - - - 0.254 0.508 - - - - 70 0.487 0.975 - - - - I 71 1.255 2.510 - 94 - 4.779 - - - - 0.254 0.508 - - - - 97 -0.394 0.788 - - 0.394 0.788 - - - - 98 0.487 0.975 - - - - 99 1.255 2.510 - - 103 -0.487 0.975 - 104 -1.255 2.510 - - - - I Pent Time/Date:29/042014 14 13 STAAD.Pro V8i 20.07.05.15 Print Run 11 of 14 .1 I �1 Job No _ Sheet No Rev 3 141010 PartTRUSS-POLY ANALYSIS Software licensed to 41 Job Title Atlantic Beach Ref By M.ALY Datc6-23-11 Chd Client Fde MAIN BOW.std IDaten'me 12-Jan-2007 07:39 r! , Beam Loads : 9 WIND C r., Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 73 UNI Ibf/ft GX -92.400 - - - - F„ 74 UNI Ibf/ft GX -92.400 - - - - 79 UNI Ibf/ft GX -92.400 - - - - ylo; 81 UNI Ibf/ft GX -92.400 - - - - 141 UNI Ibf/ft GX 92.400 - - - - i 142 UNI Ibf/ft GX 92.400 - - - - 146 UNI Ibf/ft GX 92.400 - - - - = 148 UNI Ibf/ft GX 92.400 - - - - t= Node Loads : 10 WIND D Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip ft) (kip'ft) (kip'ft) 35 - 3.186 - - - • - -0.169 0.339 - - - - t-.c 59 -0.263 0.525 - - - - 0.263 0.525 - - - - rrs' 60 -0.325 0.650 - - - _ 61 -0.837 1.674 - - - - 67 - 6.379 - - - - -0.169 0.339 - - - - �° 0.169 0.339 - - - - 70 0.325 0.650 - - - - 71 0.837 1.674 - - - - - 94 3.186 0.169 0.339 _ - - - - 97 -0.263 0.525 - t 0.263 0.525 - - - - I - 98 0.325 0.650 - - - - • 99 0.837 1.674 - - - - /PS 103 -0.325 0.650 - - - - ai 104 -0.837 1.674 - - - - r e I ii, ir,„ Pent Time/Date.29I04l2014 14:13 STAAD.Pro V8i 20.07.05.15 Pent Run 12 of t s"7: 4 le 1 � Job No "-Sheet No Rev 33 141010 Software licensed to Pan TRUSS-POLY ANALYSIS Job Title Atlantic Beach Ref By M.ALY Date-23-11 Chd Client File MAIN BOW.std IDate/iime 12-Jan-2007 07:39 2 Beam Loads : 10 WIND D Beam Type Direction Fa Da Fb Db Ecc. If, (ft) (ft) a 73 UNI Ibf/ft GX -216.000 - - - - 74 UNI Ibf/ft GX -216.000 - - - - 79 UNI Ibf/ft GX -216.000 - - 81 UNI Ibf/ft GX -216.000 - - - - 141 UNI Ibf/ft GX 216.000 - - - - 142 UNI Ibf/ft GX 216.000 - - - - 146 UNI lbf/ft GX 216.000 - - _ - 148 UNI Ibf/ft GX- 216.000 - - - - Node Displacement Summary Node L/C X Y Z Resultant rX rY rZ (in) (in) (in) (in) (rad) (rad) (rad) Max X 35 15:D+0.45W1+ 1.529 0.002 0.000 1.529 0.000 0.000 -0.002 Min X 35 12:D+L -0.031 -0.012 0.000 0.033 0.000 0.000 0.001 Max Y 79 32:0.6D+0.6W: 0.004 0.086 0.000 0.086 0.000 0.000 0.000 Min Y 79 12:D+L -0.008 -0.091 0.000 0.091 0.000 0.000 -0.000 Max Z 35 11:D -0.010 -0.004 0.000 0.010 0.000 0.000 0.000 Min Z 35 11:D -0.010 -0.004 0.000 0.010 0.000 0.000 0.000 Max rX 35 11:D -0.010 -0.004 0.000 0.010 0.000 0.000 0.000 Min rX 35 11:D -0.010 -0.004 0.000 0.010 0.000 0.000 0.000 Max rY 35 11:D -0.010 -0.004 0.000 0.010 0.000 0.000 0.000 Min rY 35 11:0 -0.010 -0.004 0.000 0.010 0.000 0.000 0.000 Max rZ 77 30:0.60+0.6W" 1.200 0.032 0.000 1.201 0.000 0.000 0.002 Min rZ 101 15:D+0.45W1+ 1.463 0.002 0.000 1.463 0.000 0.000 -0.004 Max Rst 35 15:D+0.45W1+ 1.529 0.002 0.000 1.529 0.000 0.000 _ -0.002 I Beam Force Detail Summary Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A. Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (kip-ft) (kip"ft) (kip-ft) Max Fx 88 12:D+L 0.000 10.755 -0.000 0.000 0.000 0.000 -0.000 Min Fx 88 32:0.6D+0.6W: 0.000 -9.346 0.000 0.000 0.000 0.000 0.000 Max Fy 73 15:D+0.45W1+ 0.000 -0.886 2.479 0.000 0.000 0.000 11.767 Min Fy 142 15:0+0.45W1+ 0.330 -0.861 -5.582 0.000 0.000 0.000 -0.595 Max Fz 102 15:D+0.45W1+ 0.000 -0.155 0.000 0.411 0.000 -0.122 0.000 Min Fz 161 15:0+0.45W1+ 0.000 1.123 0.000 -0.483 0.000 0.147 0.000 Max Mx 73 11:D 0.000 1.709 0.004 0.000 0.000 0.000 0.011 Min Mx 73 11:D 0.000 1.709 0.004 0.000 0.000 0.000 0.011 Max My 102 15:D+0.45W1+ 0.925 -0.155 0.000 0.411 0.000 0.258 0.000 Min My 161 15:D+0.45W1+ 0.925 1.123 0.000 -0.483 _ 0.000 _ -0.299 0.000 Print Time/Date 29/04/2014 14 13 STAAD.Pro V8i 20.07.05.15 Print Run 13 of 14 I I I A '-S oftware Job No Sheet No Rev 141010 PartTRUSS-POLY ANALYSIS oftware licensed to Job Title Atlantic Beach Ref By M.ALY Date6-23-11 Chd Client File MAIN BOW.std JDaterrime 12-Jan-2007 07:39 Beam Force Detail Summary Cont... Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (kip-ft) (kip-ft) (kip-ft) Max Mz 73 15:D+0.45W1+ 0.000 -0.886 2.479 0.000 0.000 0.000 11.767 f MinMz 141 15:0+0.45W1+ 14.120 -0.881 0.679 0.000 0.000 0.000 -5.929 fix' Reaction Summary Horizontal Vertical Horizontal Moment Node L/C - FX FY FZ MX MY MZ (kip) (kip) (kip) (kip ft) (kip ft) (kip ft) Max FX 37 33:0.6D+0.6Wi 1.008 -2.877 0.000 0.000 0.000 -2.608 Min FX 37 15:D+0.45W1+ -2.479 -0.886 0.000 0.000 0.000 11.767 Max FY 69 12:D+L -0.000 10.747 0.000 0.000 0.000 0.000 F Min FY 69 32:0.60+0.6W; 0.000 -9.340 0.000 0.000 0.000 -0.000 Max FZ 37 11:D -0.004 1.709 0.000 0.000 0.000 0.011 Min FZ 37 11:D -0.004 1.709 0.000 0.000 0.000 0.011 111 Max MX 37 11:D -0.004 1.709 0.000 0.000 0.000 0.011 Min MX 37 11:D -0.004 1.709 0.000 0.000 0.000 0.011 Max MY 37 11:D -0.004 1.709 0.000 0.000 0.000 0.011 Min MY 37 11:D -0.004 1.709 0.000 0.000 0.000 0.011 Max MZ 37 15:D+0.45W1+ -2.479 -0.886 0.000 0.000 0.000 11.767 Min MZ 37 33:0.60+0.6W, 1.008 -2.877 0.000 0.000 0.000 -2.608 Ic.: V I t I Y • Print Time/Date 29/04/2014 14 13 STAAD.Pro V8i 20.07.05.15 Pnnt Run 14 of t4 Ili Job No Sheet No Rev 141010 TOP Ml�l'' _ _ Software licensed to Part TRUSS-POLY ANALYSIS Job Title Atlantic Beach Ref NO BY M.ALY Date-23-11 cba Client , Fi1e MAIN BOW.std Daterrime 12-Jan-2007 08:12 II Beam Force Detail Summary Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression. Distance d is given from beam end A. • Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (kipft) (kip"ft) (kip"ft) Max Fx 80 30:0.6D+0.6W' 0.000 4.103 0.000 -0.017 0.000 0.000 0.000 Min Fx 147 16:D+0.45W2+ 0.000 -4.064 0.000 0.017 0.000 0.000 0.000 Max Fy 80 11:D 0.000 -1.030 0.000 0.003 0.000 0.000 0.000 Min Fy 80 11:D 0.000 -1.030 0.000 0.003 0.000 0.000 0.000 Max Fz 102 31:0.6D+0.6W: 0.000 -0.407 0.000 0.351 0.000 -0.105 0.000 Min Fz 161 15:D+0.45W1+ 0.000 0.840 0.000 -0.422 0.000 0.130 0.000 Max Mx 80 11:D 0.000 -1.030 0.000 0.003 0.000 0.000 0.000 3 Min Mx 80 11:D 0.000 -1.030 0.000 0.003 0.000 0.000 0.000 Max My 102 31:0.6D+0.6W: 0.925 -0.407 0.000 0.351 0.000 0.219 0.000 Min My 161 15:0+0.45W1+ 0.925 0.840 0.000 -0.422 0.000 -0.260 0.000 Max Mz 80 11:0 0.000 -1.030 0.000 0.003 0.000 0.000 0.000 • Min Mz 80 _ 11:D 0.000 -1.030 0.000 0.003 0.000 0.000 0.000 1, illli Iliii I I I I I Print Time/Date'29/04/2014 14:45 STAAD.Pro V8i 20.07.05.15 Pnnt Run 1 of 1 I 'mot Job No Sheet No Rev It .i: t'a 141010 BOTTOM Software licensed to Part TRUSS POLY ANALYSIS Job Title Atlantic Beach Ref BY M.ALY Datc6-23-11 Cnd Client File MAIN BOW.std I Daten'me 12-Jan-2007 08:12 C , , Beam Force Detail Summary r Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A. Axial Shear Torsion Bending Beam UC d Fx Fy Fz Mx My Mz Y (ft) (kip) (kip) (kip) (kip ) (kip"ft) (kip ft) Max Fx 149 15:D+0.45W1+ 0.000 5.476 -0.018 0.000 0.000 0.000 0.000 Min Fx 82 31:0.6D+0.6W< 0.000 -4.298 0.015 0.000 0.000 0.000 0.000 Max Fy 82 31:0.6D+0.60K 0.000 -4.298 0.015 0.000 0.000 0.000 0.000 Min Fy 149 15:D+0.45W1+ 0.000 5.476 -0.018 0.000 0.000 0.000 0.000 Max Fz 82 11:D 0.000 0.592 -0.003 0.000 0.000 0.000 0.000 Min Fz 82 11:D - 0.000 0.592 -0.003 0.000 0.000 0.000 0.000 Max Mx 82 11:D 0.000 0.592 -0.003 0.000 0.000 0.000 0.000 Min Mx 82 11:D 0.000 0.592 -0.003 0.000 0.000 0.000 0.000 Max My 82 11:D 0.000 0.592 -0.003 0.000 0.000 0.000 0.000 Min My 82 11:D 0.000 0.592 -0.003 0.000 0.000 0.000 0.000 Max Mz 149 15:D+0.45W1+ 1.575 5.476 -0.018 0.000 0.000 0.000 0.028 Min Mz 82 31:0.6D+0.6W: 1.575 -4.298 0.015 0.000 0.000 0.000 -0.024 f I I I . i I t I I. 2014 14.46 t Print Time/Date:29104 STAAD.Pro V8i 20.07.05.15 Print Run t of t t Job No Sheet No Rev 141010 BOW Pan Software licensed to TRUSS-POLY ANALYSIS Job Title Atlantic Beach Ref By M.ALY Date6-23-11 Chd Client File MAIN BOW.std Date/Time 12-Jan-2007 08:12 Beam Force Detail Summary Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A. Axial Shear Torsion Bending Beam UC d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (kip"ft) (kip"ff) (kip"ff) I Max Fx 89 12:D+L 0.000 3.000 -0.001 0.000 0.000 0.000 -0.004 Min Fx 91 32:0.60+0.6W: 0.000 -2.664 -0.002 0.000 0.000 0.000 -0.008 Max Fy 143 32:0.60+0.6W 0.000 -2.480 0.003 0.000 0.000 0.000 0.014 Min Fy 143 12:0+L 0.000 2.905 -0.003 0.000 0.000 0.000 -0.017 Max Fz 76 11:D 0.000 0.904 -0.001 0.000 0.000 0.000 -0.005 Min Fz 76 11:D 0.000 0.904 -0.001 0.000 0.000 0.000 -0.005 Max Mx 76 11:D 0.000 0.904 -0.001 0.000 0.000 0.000 -0.005 , Min Mx 76 11:0 0.000 0.904 -0.001 0.000 0.000 0.000 -0.005 Max My 76 11:D 0.000 0.904 -0.001 0.000 0.000 0.000 -0.005 Min My 76 11:D 0.000 0.904 -0.001 0.000 0.000 0.000 -0.005 3 Max Mz 143 32:0.60+0.6W: 0.000 -2.480 0.003 0.000 0.000 0.000 0.014 Min Mz 143 12:0+L 0.000 2.905 -0.003 0.000 0.000 0.000 -0.017 Ili 1 ti I I I 3 3 3 • • Print Time/Date 29/04/2014 14.45 STAAD.Pro V8i 20.07.05.15 Print Run 1 of 1 I I o Sheet No Rev I 141010 INT-POST Part TRUSS-POLY ANALYSIS Software licensed to Job Title Atlantic Beach Ref By M.ALY Datc6-23-11 Cnd Client File MAIN BOW.Std IDatertime 12-Jan-2007 08:12 i , , I Beam Force Detail Summary i Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression. Distance d is given from beam end A. Axial Shear _ Torsion Bending Beam UC d Fx Fy Fz Mx My Mz t (ft) (kip) (kip) (kip) (kip ft) (kip ft) (kip•ft) Max Fx 88 12:D+L • 0.000 10.743 0.000 0.000 0.000 0.000 -0.000 Min Fx 88 32:0.6D+0.6W: 0.000 -9.326 0.000 0.000 0.000 0.000 0.000 Max Fy 87 15:D+0.45W1+ 0.000 -3.207 0.921 0.000 0.000 0.000 6.749 Y _ Min Fy 88 15:D+0.45W1+ 0.000 -3.211 -6.026 0.000 0.000 0.000 0.465 Max Fz 87 11:D 0.000 3.369 0.000 0.000 0.000 0.000 0.000 Min Fz 87 11:D - 0.000 3.369 0.000 0.000 0.000 0.000 0.000 Max Mx 87 11:D 0.000 3.369 0.000 0.000 0.000 0.000 0.000 ±, Min Mx 87 11:D 0.000 3.369 0.000 0.000 - 0.000 0.000 0.000 Max My 87 11:0 0.000 3.369 0.000 0.000 0.000 0.000 0.000 Min My 87 11:D 0.000 3.369 0.000 0.000 0.000 0.000 0.000 L, Max Mz 87 15:0+0.45W1+ 0.000 -3.207 0.921 0.000 0.000 0.000 6.749 Min Mz 87 15:D+0.45W1+ 14.120 -3.207 0.921 0.000 _ 0.000 0.000 -6.249 n ;i C C El C 1 i Print Time/Date.29/04/2014 14 48 STAAD.Pro V8i 20.07.05.15 Print Run 1 of t I • Fejor-, - Job No Sheet No Rev 141010 EXT-POST Software licensed to Pa'TRUSS-POLY ANALYSIS Job Title Atlantic Beach Ref By M.ALY DatE6-23-11 Chd Client File MAIN BOW.std Date/rime 12-Jan-2007 08:12 1 Beam Force Detail Summary Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A. Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (kip-ft) (kip ft) (kip-ft) ' Max Fx 142 12:D+L 0.000 5.461 -1.901 0.000 0.000 0.000 1.199 Min Fx 142 32:0.6D+0.6W; 0.000 -4.786 2.239 0.000 0.000 0.000 -0.659 Max Fy 148 33:0.6D+0.6Wi 0.000 -2.903 2.616 0.000 0.000 0.000 1.763 s. Min Fy 142 15:D+0.45W1+ 0.330 -0.846 -4.996 0.000 0.000 0.000 -0.514 Max Fz 73 11:D 0.000 1.710 -0.000 0.000 0.000 0.000 -0.004 Min Fz 73 11:D 0.000 1.710 -0.000 0.000 0.000 0.000 -0.004 Max Mx 73 11:D 0.000 1.710 -0.000 0.000 0.000 0.000 -0.004 Min Mx 73 11:D 0.000 1.710 -0.000 0.000 0.000 0.000 -0.004 Max My 73 11:D 0.000 1.710 -0.000 0.000 0.000 0.000 -0.004 Min My 73 11:D 0.000 1.710 -0.000 0.000 . 0.000 0.000 -0.004 Max Mz 73 15:D+0.45W1+ 0.000 -0.890 2.283 0.000 0.000 0.000 10.058 Min Mz 141 15:0+0.45W1+ 14.120 -0.864 0.531 0.000 0.000 0.000 -5.285 1 1 S i I r I I Print Time/Date:29/04/2014 14.48 STAAD.Pro V8i 20.07.05.15 Pant Run 1 oft I _,, F„,..,, Job No 1 Sheet IJO Rev ■141010 DIAGONAL PanTRUSS-POLY ANALYSIS Software licensed to Job Title Atlantic Beach Ref By M.ALY Date6-23-11 Chd Client File MAIN BOW.std 'Date/rune 12-Jan-2007 08:12 I Beam Force Detail Summary I Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A. Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz it (ft) (kip) (kip) (kip) (kip ft) (kip-ft) (kip-ft) Max Fx 99 15:D+0.45W1+ 0.000 0.912 0.000 0.000 0.000 0.000 0.000 Min Fx 86 31:0.6D+0.6W; 0.000 -0.714 0.000 0.000 0.000 0.000 0.000 Max Fy 86 11:D 0.000 -0.084 0.000 0.000 0.000 0.000 0.000 0 Min Fy 86 11:D 0.000 -0.084 0.000 0.000 0.000 0.000 0.000 Max Fz 86 11:D 0.000 -0.084 0.000 0.000 0.000 0.000 0.000 Min Fz 86 11:D - 0.000 -0.084 0.000 0.000 0.000 0.000 0.000 Max Mx 86 11:D 0.000 -0.084 0.000 0.000 0.000 0.000 0.000 r. Min Mx 86 11:D 0.000 -0.084 0.000 0.000 0.000 0.000 0.000 Max My 86 11:D 0.000 -0.084 0.000 0.000 0.000 0.000 0.000 Min My 86 11:D 0.000 -0.084 0.000 0.000 0.000 0.000 0.000 Max Mz 86 11:D 0.000 -0.084 0.000 0.000 0.000 0.000 0.000 Min Mz 86 11:D 0.000 -0.084 0.000 0.000 0.000 0.000 0.000 ..::, '') ti • e . .1 111 I If 1 • 10 Print Time/Date 28/04/2014 14'47 STAAD.Pro V8i 20.07.05.15 Pont Run 1 of 1 I IN F12071 Job No Sheet No Rev 141010 WEB J Software licensed to Par1TRUSS-POLY ANALYSIS Job Title Atlantic Beach Ref , By M.ALY DatE6-23-11 Chd Client , F11e MAIN BOW.std IDatefTime 12-Jan-2007 08:12 Beam Force Detail Summary Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression. Distance d is given from beam end A. A Ill xial Shear Torsion Bending Beam UC d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (kip-ft) (kip ft) (kip ft) I Max Fx 85 12:D+L 0.000 0.592 0.000 0.000 0.000 0.000 0.000 Min Fx 85 32:0.6D+0.6W: 0.000 -0.806 0.000 0.000 0.000 0.000 0.000 Max Fy 84 11:D 0.000 -0.038 0.000 0.000 0.000 0.000 0.000 Min Fy 84 11:D 0.000 -0.038 0.000 0.000 0.000 0.000 0.000 Max Fz 84 11:D 0.000 -0.038 0.000 0.000 0.000 0.000 0.000 Min Fz 84 11:0 0.000 -0.038 0.000 0.000 0.000 0.000 0.000 Max Mx 84 11:D 0.000 -0.038 0.000 0.000 0.000 0.000 0.000 I Min Mx 84 11:D 0.000 -0.038 0.000 0.000 0.000 0.000 0.000 Max My 84 11:D 0.000 -0.038 0.000 0.000 0.000 0.000 0.000 Min My 84 11:D 0.000 -0.038 0.000 0.000 0.000 0.000 0.000 Max Mz 84 11:D 0.000 -0.038 0.000 0.000 0.000 0.000 0.000 Min Mz 84 11:D 0.000 -0.038 0.000 0.000 0.000 0.000 0.000 r tti j I I I I I I • Print Time/Date 29/04/2014 14-.48 STAAD.Pro V8i 20.07.05.15 Print Run 1 of 1 I Ai le% " Job No Sheet No ■Rev 141010 O Software licensed to PartTRUSS-POLY ANALYSIJIST-WEB S Job Title Atlantic Beach Ref i By M.ALY Date6_23_11 Chd Client File MAIN BOW.std IDater'1me 12-Jan-2007 08:12 11 , Beam Force Detail Summary Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A. Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (kip'ft) (kip'ft) (kip"ft) Max Fx 183 15:D+0.45W1+ 0.000 1.062 0.000 0.000 0.000 0.000 0.000 Min Fx 178 15:D+0.45W1+ 0.000 -1.058 0.000 0.000 0.000 0.000 0.000 6 Max Fy 119 11:D 0.000 -0.211 0.000 0.000 0.000 0.000 0.000 Min Fy 119 11:D 0.000 -0.211 0.000 0.000 0.000 0.000 0.000 Max Fz 119 11:D 0.000 -0.211 0.000 0.000 0.000 0.000 0.000 Min Fz 119 11:D - 0.000 -0.211 0.000 0.000 0.000 0.000 0.000 Max Mx 119 11:D 0.000 -0.211 0.000 0.000 0.000 0.000 0.000 Min Mx 119 11:D 0.000 -0.211 0.000 0.000 0.000 0.000 0.000 Max My 119 11:D 0.000 -0.211 0.000 0.000 0.000 0.000 0.000 . Min My 119 11:D 0.000 -0.211 0.000 0.000 0.000 0.000 0.000 ir Max Mz 119 11:D 0.000 -0.211 0.000 0.000 0.000 0.000 0.000 Min Mz 119 11:D 0.000 -0.211 0.000 0.000 0.000 0.000 0.000 I: If II it IL Print Time/Date 29/04/2014 14 46 STAAD.Pro V8i 20.07.05.15 Pont Run 1 of 1 I S ice.. II Top Chord II Input Data p I v! Member Section 4x2x14ga 1 A= Tube Width 2 in i ■. I B = Tube Length 4 in i • R= Corner Inner Radius 0.0938 in I • • t=Thickness 0.083 in Z. ...______4..........._ ; •2! b B KLx= Buckling around x-x 10.5 ft I • I KLy= Buckling around x-x 3.15 ft 2 E = Modulus of Elasticity 29500 ksi - .1 Fy= Yield Stress 50 ksi Y G = Shear Modulus _ 11300 _ ksi 0 A Calculated Parameter II Applied Forces 1 1-Properties of 90°corner M 0.00001 kip.ft 'oil r= R +t/2, Centerline of Dimension 0.135 in P 4.103 kips u = ir. r/2,Arc Length 0.213 in c=0.637.r Distance of c.g. from center 0.086 in 2-Flat widths of flanges and webs _ Flat width of Dim. a=A- (2.r+t) 1.6464 in Flat width of Dim. b= B- (2.r+t) 3.6464 in I Calculation of IX III Element L, Length (in) Y, Distance to the center(in) L xY2 Ix Flanges 2.a 3.2928 B/2-t/2 1.9585 12.6303 0.0000 H Web 2.b 7.2928 0 0 0.0000 8.0806 Corners 4.0 0.850 b/2 + c 1.909 3.0995 0.0000 Sum _ 11.4358 3.8679 _ 15.7298 _ 8.0806 ICalculation of ly I Element L, Length (in) X, Distance to the center(in) L x X2 l,' Flanges 2.a 3.2928 0 0 0.0000 0.7438 Web 2.b 7.2928 A/2-t/2 0.9585 6.7001 0.0000 Corners 4.0 0.850 a/2 +c 0.909 0.7031 0.0000 Sum 11.4358 1.8679 _ 7.4031 0.7438 1 Section Properties I 2 A L x t 0.9492 in2 Ix t x ( L x y2 +Ix') 1.9763 in4 r ( 2 (v t x L x X +ly') 0.6762 in4 Sx lx/(B/2) 0.9881 in Sy Iv/(A/2) 0.6762 in' rx (Ix/A)°5 1.4429 in ry (ly/A)0.5 0.8440 in 3 I I `y I 71 Nominal Buckling Stress KLX/rx 87.3213 KLy/ry 44.7845 '' KL/r 87.3213 Fe 7t2. E/(KL/r)2 38.1840 ksi lc (Fy/Fe)°•5 1.1443 :11 Fn 28.9032 ksi I Effective Area C effective width of compression flange w/t= alt 19.8361 A 1.0521(k)0 5 x (w/t) x (Fn/E)°5 0.3266 r (1-0.22/)0/A 0.9993 - ae _ 1.6464 _ in effective width of web element Dr!. wit= b/t 43.9325 I 1.0521(k)0"5 x(w/t) x(Fn/E)°5 0.7233 r (1-0.22/A)/ A 0.9620 I be 3.5079 in Allowable Axial Load Ae Ae=A-2 x t x [(a-a0) + (b-be)) 0.92617591 in2 Pn Pn=Ae x Fn 26.7694403 kips 147 C2c _ 1.8 . Pa = Pn inc 14.8719 kips 'F Check Compression Stresses Loads from Wind? iiir Cbl I Cb1=(P/Pa) NO 0.2759 } Allowable Stress Unity I 1 0.2759 Section is OK forl Computing of Mnx By using the effective width of compression flange and assuming V, the web is fully effective, the neutral axis can be located as follow: Element L, Length (in) y, Distance to top fiber(in) L.y L.y2 r C. Flanges ae 1.6464 t/2 0.0415 0.0683 0.0028 Web 2.b 7.2928 B/2 2 14.5856 29.1712 1 ip. C. Corners 2.0 0.42508554 c+t/2 0.127686 0.0543 0.0069 T. Flanges ae 3.6464 B-t/2 3.9585 14.4343 57.1381 T.Corners 2.0 0.42508554 B-c _ 3.914 1.6637 6.5114 z Sum 13.4358 10.0415 30.8062 92.8305 ycg= L.y/ L 2.2928 Z=R+t 0.1768 in I IP I f 1 The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation I Check the effectiveness of the Web I f, (ycg-Z)Fy/ycg 46.1445 ksi f2 - (B-N-Z)Fy/ycg -33.3723 ksi Y f2/f, -0.7232 k 4+2(1-03+2(1-w) 17.6804 3 h/ belt 43.9325 I 1.052/(k)°5 x (h/t) x(f1/E)°5 0.4347 r (1-0.22/X)/X 1.1362 3 be 3.5079 in b1 be/(3-w) 0.9422 in st b2 _ 1.7539 in di b,+b2 2.6961 in 2 'web I 2(1/12)(b)3 8.0806 in4 S(Ly2) 92.8305 in4 3 (-)(SI-)(Ycg)2 70.6339 in4 1'x 30.2771 in4 3 Ix=1'0 2.5130 in4 Sex=lx/Ycg 1.0960 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 1.1304 in4 Sf fullSx 0.9881 in4 La 0.36C0.(E I.G.j)05/(Fy. Sf) 52.0769 ft Fey Cbn.(E I.G.j)0.5/(L. Sf) 688.8480 ksi I Allowable Bending Moment I Mnx 4.5667 kip.ft 01) 1.67 . Ma = Mnx/fib _2.73457546 kip.ft Check Stresses I Cmx 0.6-0.4*M,/M2 0.6000 Loads from Wind? Cbl (P/Pa) + (Cmx Mx/Ma 0.2759 ) 0 r Cb2 (P/ Pa) + (Mx/Ma) 0.2759 Allowable Stress Unity I 1 1 Cb If((P/Pa) <= 0.15,Cb2,Cb,) 0.2759 Section is OK 1 I I I I { el BOTTOM Chord (COMP) LiInput Data YI Member Section 2x2x15ga A=Tube Width 2 in ∎• j 1 t B = Tube Length 2 in j • R = Corner Inner Radius 0.0938 in j i i t=Thickness 0.072 in -x-- ■ -•------4--.---- •-" b e z KLx= Buckling around x-x 1.58 ft J KLy= Buckling around x-x 7.5 ft • E = Modulus of Elasticity 29500 ksi -- J r Fy=Yield Stress 50 ksi '`► G = Shear Modulus 11300 ksi o A Calculated Parameter Applied Forces 1-Properties of 90°corner M 0.00001 kip.ft C . r= R +t/2, Centerline of Dimension 0.130 in P 5.476 kips u= n. r/2,Arc Length 0.204 in c=0.637.r Distance of c.g. from center 0.083 in 2-Flat widths of flanges and webs Flat width of Dim. a= A-(2.r+t) 1.6684 in Flat width of Dim. b= B-(2.r+t) 1.6684 in i Calculation of lx Element L, Length (in) Y, Distance to the center(in) L xY2 lx Flanges 2.a 3.3368 B/2-t/2 0.964 3.1009 0.0000 Web 2.b 3.3368 0 0 0.0000 0.7740 Corners 4.0 0.816 b/2 +c 0.917 0.6857 0.0000 Sum 7.4892 1.8809 _ 3.7865 _ 0.7740 Calculation of ly I Element L, Length (in) X, Distance to the center(in) L x X2 l,,' Flanges 2.a . 3.3368 0 0 0.0000 0.7740 IP Web 2.b 3.3368 A/2-t/2 0.964 3.1009 0.0000 Corners 4.0 0.816 a/2 +c 0.917 0.6857 0.0000 Sum 7.4892 1.8809 3.7865 0.7740 1 I Section Properties I A L x t 0.5392 in2 Ix t x ( L x Y2 +lX) 0.3284 in4 liplv t x (L x X2 +ly) 0.3284 in4 Sx lx/(B/2) 0.3284 in Sy I /(A/2) 0.3284 in rx (lx/A)0.5 0.7804 in ry (l ./A)0 5 0.7804 in I I I i I Nominal Buckling Stress KLx/rx 24.2967 KLy/ry 115.3325 1. KL/r 115.3325 Fe 1I2. E/(KL/r)2 21.8886 ksi Ic (Fy/Fe)°.5 1.5114 Fn 19.1963 ksi I Effective Area effective width of compression flange w/t= a/t 23.1722 X 1.0521(k)05 x (w/t) x (Fn/E)°'S 0.3109 r _ (1-0.22 /X)/X 0.9405 ae _ 1.6684 in effective width of web element wit= b/t 23.1722 I 1.0521(k)°5 x (w/t) x (Fn/E)°5 0.3109 r _ (1-0.22/A) / A 0.9405 n be 1.6684 in I Allowable Axial Load I Ae Ae =A-2 x t x[(a-ae) + (b-be)] 0.53922321 in2 Pn Pn=Ae x Fn 10.3510954 kips Sic _ 1.8 r11 Pa = Pe/0c 5.7506 kips I Check Compression Stresses Loads from Wind? Cbl I Cb1=(P/Pa) 0.9522 NO Allowable Stress Unity 1 1 ' 0.9522 Section is OK illi Computing of Mnx I By using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: 3 Element L, Length (in) y, Distance to top fiber(in) L.y L.y2 C. Flanges ae 1.6684 t/2 0.036 0.0601 0.0022 Web 2.b 3.3368 B/2 1 3.3368 3.3368 3 C. Corners 2.0 0.40780564 c+t/2 0.118683 0.0484 0.0057 T. Flanges ae 1.6684 B-t/2 1.964 3.2767 6.4355 T.Corners 2.0 0.40780564 B-c 1.917 0.7819 1.4991 Sum 7.4892 5.0360 7.5039 11.2794 3 y . L.y/L 1.0020 Z=R+t 0.1658 in 3 j IF 1 F2.,_, Job No Sheet No Rev 41110 . Pan TRUSS-POLY ANALYSIS Software licensed to lir Job Title Atlantic Beach Ref By M.ALY DatE6-23-11 Chd Client File INTERMEDIATE BOW.Stc1DateuTime 12-Jan-2007 08:18 i i Node Loads : 6 WIND A Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kip ft) (kip-ft) (kip"ft) 35 -2.000 4.000 - - - - i 59 - 1.75E+3 - - - - 60 -4.000 7.000 - - - - 61 -5.000 10.000 - - - - -695.000 1.39E+3 - - - - ' 67 - 639.000 - - - - 0 Ir. 70 307.000 614.000 - - - - 71 395.000 790.000 695.000 1.39E+3 - - - - 1J, f 94 160.000 320.000 97 992.000 98 307.000 614.000 - - - - - - - - - ? - - - 99 790.000 1.58E+3 103 -307.000 614.000 104 -790.000 1.58E+3 - - Node Loads : 7 WIND B Node FX FY FZ MX MY MZ - (Ib) (Ib) (Ib) (kip ft) (kip-ft) (kip ft) 35 83.000 -165.000 - - - - 59 - 1.22E+3 - - - - 60 159.000 -317.000 - - - - 61 204.000 -409.000 - - - - -486.000 972.000 - - - - 67 - 301.000 • - - - - 70 144.000 289.000 - - - - 71 186.000 372.000 - - - - 486.000 972.000 - - - - 94 75.000 150.000 - - - - 97 - 467.000 - - - - 98 144.000 289.000 - - - - 99 372.000 744.000 - - - - 103 -144.000 289.000 - - - - 104 -372.000 744.000 - - - - ii I Print Time/Date:29!04!2014 14:55 STAAD.Pro V8i 20.07.05.15 Print Run 6 of 9 I 3 „,,......., , Job No Sheet No i Rev 1� _____ _ Software licensed to Pa`tTRUSS-POLY ANALYSIS Job Title Atlantic Beach Ref By M.ALY Dat€-23.11 Chd Client File INTERMEDIATE BOW.stc1 Date/Time 12-Jan-2007 08:18 Node Loads : 2 LIVE LOAD Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kip-ft) (kipit) (kip ft) 35 - -197.000 - _ 59 - -612.000 - - - 60 - -379.000 - - - - 61 - -975.000 - - - - t 67 - -394.000 - - - - 70 - -379.000 - _ - - 71 - -975.000 - _ _ _ 94 - -197.000 - - - - I.1 97 - -612.000 - - - - - 98 - -379.000 - - 99 - -975.000 - - - - 103 - -379.000 - - - 104 _ - _ -975.000 - - - Node Loads : 3 SNOW LOAD I Node FX FY FZ MX MY MZ I (Ib) (Ib) (Ib) (kip fl) (kip'ft) (kip'ft) 35 - -0.000 - - - 67 - -0.000 - - - _ 94 - -0.000 - - _ - _ - Node Loads : 4 UNBALANCED SNOW Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kip-ft) (kip ft) (kip'ft) _ 59 -0.000 67 -0.000 - 97 - -0.000 - - - - Node Loads : 5 DRIFT SNOW I Node FX FY FZ MX MY MZ (Ib) (Ib) (lb) (kip•ft) (kip'ft) (kip'ft) , 61 - -0.010 - - - 99 -0.010 - - - I I Print Time/Date:29!04/2014 14:55 STAAD.Pro V8i 20.07.05.15 Print Run 5 of 9 ..„ i -- Job No Sheet No Rev PartTRUSS-POLY ANALYSIS g - - Software licensed to Job Title Atlantic Beach Ref By M.ALY Dat%-23-11 Chd Client File INTERMEDIATE BOW.stclDate/rime 12-Jan-2007 08:18 r a� Combination Load Cases Cont... z Comb. Combination L/C Name Primary Primary L/C Name Factor 7 WIND B 0.60 rr 32 0.6D+0.6W3 1 DEAD LOAD 0.60 01 1 9 WIND C 0.60 33 0.6D+0.6W4 1 DEAD LOAD 0.60 10 WIND D 0.60 1 34 0.6D+0.7E 1 DEAD LOAD 0.60 I 8 SEISMIC 0.70 35 COMBINATION LOAD CASE 35 1 DEAD LOAD 0.90 I 6 WIND A 1.00 36 COMBINATION LOAD CASE 36 1 DEAD LOAD 0.90 I 7 WIND B 1.00 37 COMBINATION LOAD CASE 37 1 DEAD LOAD 0.90 9 WIND C 1.00 3 38 COMBINATION LOAD CASE 38 1 DEAD LOAD 0.90 10 WIND D 1 00 Node Loads : 1 DEAD LOAD Node FX FY FZ MX MY MZ (lb) (lb) ilb) (kip f1) (kip 0) (kip ft) 35 -82.000 59 - -256.000 - - - - I lif 60 - -158.000 - - - - 61 -406.000 66 - -59.000 67 - -164.000 - - - - 70 - -158.000 - - - - 71 - -406.000 - - - - . 74 - -59.000 - - - - 94 - -82.000 - - - - I 97 -256.000 - - - - 98 -158.000 - - - - 99 - -406.000 - - - - 102 - -59.000 - I IF 103 -158.000 - - - 104 - -406.000 - - - - 105 - _ -59.000 - - - - 1 6 1r IPrint Time/Dale:29!04!201414:55 STAAD.Pro V8i 20.07.05.15 Print Run 4 of 9 I 1 For-% Job No Sheet No Rev Software licensed to Part TRUSS-POLY ANALYSIS Job Title Atlantic Beach Ref 8Y M.ALY Datt6-23-11 Chd Client File INTERMEDIATE BOW.st4Date/Time 12-Jan-2007 08:18 3 Combination Load Cases Cont... Comb. Combination L/C Name Primary Primary L/C Name Factor 2 LIVE LOAD 0.75 18 D+0.45W4+0.75L 1 DEAD LOAD 1.00 10 WIND D 0.45 3 2 LIVE LOAD 0.75 19 D+0.45W1+0.75BSL+0.75DSL 1 DEAD LOAD 1.00 6 WIND A 0.45 3 SNOW LOAD 0.75 5 DRIFT SNOW 0.75 20 D+0.45W2+0.75BSL+0.75DSL 1 DEAD LOAD 1.00 7 WIND B 0.45 3 3 SNOW LOAD 0.75 5 DRIFT SNOW 0.75 21 D+0.45W3+0.75BSL+0.75DSL 1 DEAD LOAD 100 3 9 WIND C 0.45 3 SNOW LOAD 0.75 5 DRIFT SNOW 0.75 22 D+0.45W4+0.75BSL+0.75DSL 1 DEAD LOAD 1 00 1 10 WIND D 0.45 1 3 SNOW LOAD 0.75 id 5 DRIFT SNOW 0.75 23 D+0.45W1+0.75USL 1 DEAD LOAD 1.00 1 6 WIND A 0.45 4 UNBALANCED SNOW 0.75 24 D+0.45W2+0.75USL 1 DEAD LOAD 1 00 7 WIND B 0.45 1 4 UNBALANCED SNOW 0.75 25 D+0.45W3+0.75USL 1 DEAD LOAD 100 9 WIND C 0.45 1 4 UNBALANCED SNOW 0.75 26 D+0.45W4+0.75USL 1 DEAD LOAD 100 10 WIND D 0.45 4 UNBALANCED SNOW 0.75 27 D+0.525E+0.75L 1 DEAD LOAD 1.00 8 SEISMIC 0.52 2 LIVE LOAD 0.75 1 28 D+.0.525E+0.75BSL+0.75DSL 1 DEAD LOAD 1.00 8 SEISMIC 0.52 3 SNOW LOAD 0.75 5 DRIFT SNOW 0.75 29 D+0.525E+0.75USL 1 DEAD LOAD 100 illi 8 SEISMIC 0.52 4 UNBALANCED SNOW 0.75 30 0.6D+0.6W1 1 DEAD LOAD 0.60 1 6 WIND A 0.60 31 0.6D+0.6W2 1 DEAD LOAD 0.60 Print Time/Date:29!04/2014 14 55 STAAD.Pro V8i 20.07.05.15 Print Run 3 of 9 I IF 'mot Job No Sheet No ,Rev 41Fillill il Part TRUSS-POLY ANALYSIS Software licensed to lif Job Title Atlantic Beach Ref By M.ALY 13ath-23-11 Chd Client File INTERMEDIATE BOW.stc Bate/Time 12-Jan-2007 08:18 Beams Cont.... ir Beam Node A Node B Length Property!K 13 degrees) 157 105 104 7.460 2 0 158 105 97 11.353 1 0 159 35 66 10.375 3 0 160 66 74 10.750 3 0 161 74 67 10.375 3 0 Lz 162 67 105 10.375 3 0 i 163 105 102 10.750 3 0 164 102 94 14.375 3 0 `.I Basic Load Cases F Number Name ,r l 1 DEAD LOAD 2 LIVE LOAD tr.... 3 SNOW LOAD 4 UNBALANCED SNOW 5 DRIFT SNOW 6 WIND A LS 7 WIND B � 8 SEISMIC 9 WIND C 10 _ WIND D 1 Combination Load Cases EComb. Combination L/C Name Primary Primary L/C Name Factor 11 D 1 DEAD LOAD 1.00 l 12 D+L 1 DEAD LOAD 1.00 I'. ' 2 LIVE LOAD 1.00 13 D+BSL+DSL 1 DEAD LOAD 1.00 3 SNOW LOAD 1.00 5 DRIFT SNOW 1.00 14 D+USL 1 DEAD LOAD 1.00 4 UNBALANCED SNOW 1.00 15 D+0.45W1+0.75L 1 DEAD LOAD 1.00 6 WIND A 0.75 2 LIVE LOAD 0.45 16 D+0.45W2+0.75L 1 DEAD LOAD 1.00 7 WIND B 0.45 2 LIVE LOAD 0.75 17 D+0.45W3+0.75L . 1 DEAD LOAD 1.00 9 WIND C 0.45 i Print Time/Date:29/04/2014 14:55 STAAD.Pro V8i 20.07.05.15 Print Run 2 of 9 I I Job No Sheet No Rev .Fp-.40, i..: OOP Software licensed to Part TRUSS-POLY ANALYSIS Job Title Atlantic Beach Ref By M.ALY Dat€-23.11 Chd Client File INTERMEDIATE BOW.stclDate/Time 12-Jan-2007 08:18 1 Nodes Node' X Y Z (ft) (ft) (ft) 35 63.000 16.500 0.000 59 78.750 26.500 0.000 60 66.750 20.500 0.000 61 70.797 23.500 0.000 66 73.375 16.500 0.000 67 94.500 16.500 0.000 70 90.750 20.500 0.000 71 86.703 23.500 0.000 :: 74 84.125 16.500 0.000 94 126.000 16.500 0.000 97 110.250 26.500 0.000 98 122.250 20.500 0.000 99 118.203 23.500 0.000 ii 102 115.625 16.500 0.000 103 98.250 20.500 0.000 104 102.297 23.500 0.000 105 104.875 16.500 0.000 Beams Beam Node A Node B Length Propertyl 0 1 (ft) '(degrees) 76 60 35 5.483 1 0 77 60 61 5.038 1 0 78 59 61 8.500 1 0 84 66 60 7.739 2 0 85 66 61 7.460 2 0 86 66 59 11.353 1 0 89 70 67 5.483 1 0 90 70 71 5.037 1 0 91 59 71 8.500 1 0 97 74 70 7.739 2 0 98 74 71 7.460 2 0 99 74 59 11.353 1 0 143 98 94 5.483 1 0 144 98 99 5.037 1 0 145 97 99 8.500 1 0 150 102 98 7.739 2 0 151 102 99 7.460 2 0 152 102 97 11.353 1 0 153 103 67 5.483 1 0 154 103 104 5.037 1 0 155 97 104 8.500 1 0 J 156 105 103 . 7.739 2 0 Print Time/Date:29/04/2014 14:55 .STAAD.Pro V8i 20.07.05.15 Print Run 1 of 9 ill I minew.. 1:: 1 . , .. ,.— 0 . c CO cc' n ! .,, o . o. o (V . CO cqfl • (r) s- N- Er ■13 t IF, Ili , 1 . 1 ili CO a, cr . ti to ..d. .0. w 0 c:-) ro... a . _ 7,la C.-)- C■1 . to i . . < z co m to .< I-- ›- < _I lin 0 Cl vt i o CL. Ch (/) Ct W >- et -.I w. 1- css • Z E- 2 Z CD 2 .FI:I 1 5 >• 1., U- - to . to I ..-• I 0 f _ • u) e- to .- . -71 to Ctt 1 1111 U.'; 0 , r-■ to 0 .-- C. 11.7' NI Co 0, 0 0 01 0/ ,... . Z"--.; 0, r;. ,,, . . . • . . 1. 0 l0 1 . ,.. co <0 , ... Cal . . 11 52 . an ea to % to .- g -C I., (-) , O C13 P2 <1) Q co 03 .11 vr 0 o i 3 IL eN JIB ..... 17 0 • :W 11 .E 0. 1, III I o co ii t- o m 0 B. N a CO I U) W E O N m J in Z p CO c i Q F ›- a J a J W a CC m LL s, I I V � I • 0 n ! 0 C. r N W • O a` a a u) • I I I v o c °, a U v v v) m v 3 o E. V 64.1 r ill 2„.., •Cf) N D z6 its, ~ !OZ E I ~ U . i . I 1 I CFS Version 7.0.0 Page 3 Section: Section 1.sct Cylindrical Tube 1.315ox0.083 Rev. Date: 4/29/2014 4:31:27 PM Printed:4/29/2014 4:32:42 PM Material Type: A1039 SS Grade 50, Fy=50 ksi Design Parameters: Lx 8.330 ft Ly 8.330 ft Lt 8.330 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Cbx 1.0000 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None 0 0 k Red. Factor, R: 0 Lm 20.000 ft Loads: P Mx Vy My Vx (k) (k-in) (k) (k-in) (k) Entered 0.5920 0.0000 0.0000 0.0000 0.0000 Applied 0.5920 0.0000 0.0000 0.0000 0.0000 Strength 0.8692 3.4850 3.0208 3.4850 3.0208 Effective section properties at applied loads: Ae 0.32125 in^2 Ixe 0.061226 in^4 Iye 0.061226 in^4 Sxe(t) 0.093120 in^3 Sye(1) 0.093120 in^3 Sxe(b) 0.093120 in^3 Sye(r) 0.093120 in"3 III Interaction Equations NAS Eq. C5.2.1-1 (P, Mx, My) 0.681 + 0.000 + 0.000 = 0.681 <= 1.0 NAS Eq. C5.2.1-2 (P, Mx, My) 0.066 + 0.000 + 0.000 = 0.066 <= 1.0 NAS Eq. C3.3.1-1 (Mx, Vy) Sqrt(0.000 + 0.000)= 0.000 <= 1.0 NAS Eq. C3.3.1-1 (My, Vx) Sgrt(0.000 + 0.000)= 0.000 <= 1.0 KL/r exceeds 200. I I I .. I i I I. I I 11 CFS Version 7.0.0 Page 2 II Section: Section 1.sct Cylindrical Tube 1.3150x0.083 ` Rev. Date:4/29/2014 4:31:27 PM :I Printed: 4/29/2014 4:32:42 PM Material: A1039 SS Grade 50 II- No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0 in^6 Torsion Constant Override, J 0 in^4 Cylindrical Tube, Thickness 0.083 in Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Closed shape Length - Angle Radius Web k Hole Size Distance ' (in) (deg) (in) Coef. (in) (in) 1 1.3150 0.000 0.57450 None 0.000 0.0000 0.6575 2 1.3150 90.000 0.57450 None 0.000 0.0000 0.6575 3 1.3150 180.000 0.57450 None 0.000 0.0000 0.6575 9 1.3150 -90.000 0.57450 None 0.000 0.0000 0.6575 Full Section Properties I Area 0.32125 in"2 Wt. 0.0010922 k/ft Width 3.8704 in Ix 0.06123 in^4 rx 0.43657 in Ixy 0.00000 in^4 Sx(t) 0.093120 in"3 y(t) 0.65750 in a 0.000 deg Sx(b) 0.093120 in^3 y(b) 0.65750 in Height 1.31500 in Iy 0.06123 in^4 ry 0.43657 in Xo 0.00000 in Sy(1) 0.093120 in^3 x(l) 0.65750 in Yo 0.00000 in Sy(r) 0.093120 in^3 x(r) 0.65750 in jx 0.00000 in Width 1.31500 in jy 0.00000 in I1 0.06123 in^4 rl 0.43657 in 12 0.06123 in"4 r2 0.43657 in Ic 0.12245 in^4 rc 0.61740 in Cw 0.000000 in^6 Io 0. 12245 in"4 ro 0.61740 in J 0.12190 in^4 II Fully Braced Strength - 2010 North American Specification - US (ASD) Material Type: A1039 SS Grade 50, Fy=50 ksi Compression Positive Moment Positive Moment Pao 8.9235 k Maxo 3.4850 k-in Mayo 3.4850 k-in Ae 0.32125 in^2 Ixe 0.061226 in^4 Iye 0.061226 in^4 Sxe(t) 0.093120 in"3 Sye(1) 0.093120 in"3 II Tension Sxe(b) 0.093120 in"3 Sye(r) 0.093120 in^3 Ta 9.6182 k Negative Moment Negative Moment Maxo 3.4850 k-in Mayo 3.4850 k-in Shear Ixe 0.061226 in^4 Iye 0.061226 in^4 Vay 3.0208 k Sxe(t) 0.093120 in^3 Sye(1) 0.093120 in"3 Vax 3.0208 k Sxe(b) 0.093120 in^3 Sye(r) 0.093120 in^3 II Member Check - 2010 North American Specification - US (ASD) 1 I . CFS Version 7.0.0 Page 1 Section: Section 1.sct Cylindrical Tube 1.315(3)(0.083 Rev. Date: 4/29/2014 4:31:27 PM Printed: 4/29/2014 4:32:42 PM I I I I t Section Inputs I DIAGONAL(Ten.) I Input Data It Member Section I 2x2x15ga I rt A= Tube Width 2 in / B = Tube Length 2 in t R = Corner Inner Radius 0.0938 in . t= Thickness 0.072 in g-(- x KLX Buckling around x-x 12.17 ft j • KLy Buckling around x-x 12.17 ft I S E = Modulus of Elasticity 29500 ksi i g Fy= Yield Stress 55 ksi - J Yi G = Shear Modulus 11300 ksi d = Bolt diameter 0.5 in ° I. n = Number of bolts 1 a I Calculated Parameter II Applied Forces I 1-Properties of 90° corner _ M 0.0001 kip.ft ` r= R +t/2, Centerline of Dimension 0.130 in P 0.714 kips u= n. r/2, Arc Length 0.204 in c=0.637.r Distance of c.g. from center 0.083 in 2-Flat widths of flanges and webs Flat width of Dim. a=A- (2.r+t) 1.6684 in Flat width of Dim. b= B- (2.r+t) 1.6684 in I Calculation of I,, I Element L, Length (in) Y, Distance to the center(in) L xY2 lx. Flanges 2.a 3.3368 B/2 -t/2 0.964 3.1009 0.0000 Web 2.b 3.3368 0 0 0.0000 0.7740 Corners 4.0 0.816 b/2 +c 0.917 0.6857 0.0000 Sum 7.4892 1.8809 3.7865 0.7740 ICalculation of Iy Element L, Length (in) X, Distance to the center(in) L x X2 l,,' Flanges 2.a 3.3368 0 0 0.0000 0.7740 Web 2.b 3.3368 A/2 -1/2 0.964 3.1009 0.0000 Corners 4.0 0.816 a/2 +c 0.917 0.6857 0.0000 Sum 7.4892 1.8809 _ 3.7865 0.7740 I 3-Section Properties I A= L x t, Gross Area 0.5392 in2 An=A- n x t x(d+.0625) x 2 0.4582 in" I 4-Allowable Axial Load I P.=An x Fy 25.2022767 kips Sgt 1.67 Pa = Pn/nt 1 15.0911836 I kips J I 5-Check Tension Stresses I I Loads from Wind? Cb1=(P/Pa) 0.0473 NO Allowable Stress Unity I 1 0.0473 Section is OK 1 I It', te . s The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation Check the effectiveness of the Web I fi (yc9 Z)Fy/yc9 41.7262 ksi f2 -(B-yc9-Z)Fy/yc9 -41.5306 ksi y f2/f1 -0.9953 k 4+2(1-03+2(1-y) 23.8784 h/ be/t 23.1722 I 1.052/(k)05 x(h/t)x(f 1/E)°.5 0.1876 f r (1-0.22/k)/X -0.9199 be 1.6684 in ir b1 be/(3-W) 0.4176 in b2 0.8342 in b1+b2 1.2518 in 2 I web 1 2(1/12)(b)3 0.7740 in4 S(Ly2) 11.2794 in4 (-)(SL)(yc9)2 7.5186 in4 rx 4.5348 in4 Ix=1'x t 0.3265 in4 4 Sex=lx/Yc9 0.3259 _ in3 Cb=1.0 for combined axial load and bending moment 111::i ! 2b2d2t/(b+d) 0.3344 in4 St fullSx 0.3284 in4 t L„ 0.36C0.(E I.G.j)05/(FY. S1) 34.7430 ft Fe' Cbr[.(E I.G.j)0.5/(L. Sf) 396.5013 ksi Allowable Bending Moment Mnx 1.3578 kip.ft S2b 1.67 Ma = Mnx/S2b 0.81303531 kip.ft I Check Stresses I Cmx 0.6 0.4*M,/M2 0.6000 Loads from Wind? Cbl (P/Pa) + (Cmx Mx/Ma 0.4177 ) 0 P t Cb2 (P/Pa) + (Mx/Ma) 0.4177 Allowable Stress Unity I 1 Cb If((P/Pa) <= 0.15,Cb2,Cb�) 0.4177 Section is OK I it 3 3. I Nominal Buckling Stress I II KLx/rx 187.1462 KLy/ry 187.1462 3 KL/r 187.1462 Fe n2. E/(KL/r)2 8.3130 ksi lc (Fy/Fe)05 2.4525 3 Fn 7.2905 ksi I Effective Area i e 2 ffective width of compression flange w/t= alt 23.1722 X 1.052/(k)05 x(w/t) x(Fn/E)°'S 0.1916 r _ (1-0.22/X)/X -0.7732 - ae 1.6684 in effective width of web element w/t= b/t 23.1722 I 1.0521(k)05 x(w/t) x(Fn/E)°.5 0.1916 r (1-0.22 /X)/X -0.7732 be 1.6684 _ in I Allowable Axial Load Ae Ae=A-2 x t x [(a-ae) + (b-be)] 0.53922321 in2 Pn Pn=Ae x Fn 3.93122301 kips C/c 1.8 Pa = Pn inc 2.1840 kips Check Compression Stresses Loads from Wind? Cn, I Cb1=(P/Pa) NO 0.4176 Allowable Stress Unity I 1 0.4176 Section is OK Computing of Mnx I 3 By using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: Element L, Length (in) y, Distance to top fiber(in) L.y L.y2 C. Flanges ae 1.6684 t/2 0.036 0.0601 0.0022 Web 2.b 3.3368 B/2 1 3.3368 3.3368 C. Corners 2.0 0.40780564 c+t/2 0.118683 0.0484 0.0057 3 T. Flanges ae 1.6684 B-t/2 1.964 3.2767 6.4355 T.Corners 2.0 0.40780564 B-c 1.917 0.7819 1.4991 Sum 7.4892 5.0360 _ 7.5039 _ 11.2794 ycy= L.y/L 1.0020 Z=R+t 0.1658 in • 1 3 I I lipI DIAGONAL (comp.) Input Data YI r" Member Section 2x2x15ga ii:i. A= Tube Width 2 in i B = Tube Length 2 in ; • • R = Corner Inner Radius 0.0938 in x • I • x t=Thickness 0.072 in - • -'- - -E - - • KLx= Buckling around x-x 12.17 ft 1 • • �7 KLy= Buckling around x-x 12.17 ft E = Modulus of Elasticity 29500 ksi �•- J Fy= Yield Stress 50 ksi Y G = Shear Modulus 11300 ksi o Ir.v A Calculated Parameter I Applied Forces 1- Properties of 90° corner M 0.0001 kip.ft r= R +t/2, Centerline of Dimension 0.130 in P - 0.912 kips u = n. r/2. Arc Length 0.204 in c=0.637.r Distance of c.g. from center 0.083 _ in `- 2- Flat widths of flanges and webs ilk Flat width of Dim. a= A- (2.r + t) 1.6684 in Flat width of Dim. b= B - (2.r + t) 1.6684 in illii Calculation of lx Element L, Length (in) Y, Distance to the center (in) L xY' Ix' Flanges 2.a 3.3368 B/2 - t/2 0.964 3.1009 0.0000 c Web 2.b 3.3368 0 0 0.0000 0.7740 Corners 4.0 0.816 b/2 + c _ 0.917 0.6857 0.0000 Sum 7.4892 1.8809 3.7865 0.7740 i lit Calculation of ly Element L, Length (in) X, Distance to the center (in) L x X2 ly' • Flanges 2.a 3.3368 0 0 0.0000 0.7740 Web 2.b 3.3368 A/2 -t/2 0.964 3.1009 0.0000 II Ili Corners 4.0 0.816 a/2 + c 0.917 0.6857 0.0000 Sum _ 7.4892 1.8809 3.7865 0.7740 r: - Section Properties ii A L x t 0.5392 in 0--", Ix tx ( LxY2 +lx') 0.3284 in' 10 IY t x (L x X2 +ly') 0.3284 in4 Sx lx I(B/2) 0.3284 in Sy I I(Al2) 0.3284 in' rx (lx/A)°-5 0.7804 in ry (ly/A)°' 0.7804 in i p. i . 1 • I I JOIST Web (Ten.) I Input Data I Member Section I 1.25x1.25x16ga I rl A=Tube Width 1.25 in ' B ■ = Tube Length 1.25 in R= Corner Inner Radius 0.0625 in j , 3 t=Thickness 0.065 in x 1.2! KLX Buckling around x-x 1.84 ft j • • KLy Buckling around x-x 1.84 ft I E = Modulus of Elasticity 29500 ksi I Fy= Yield Stress 55 ksi - G = Shear Modulus 11300 ksi Y� d = Bolt diameter 0.5 in ° n = Number of bolts 1 a I Calculated Parameter II Applied Forces 1-Properties of 90°corner M 0.0001 kip.ft r= R +t/2, Centerline of Dimension 0.095 in P _ 1.058 _ kips u= n. r/2, Arc Length 0.149 in c=0.637.r Distance of c.g. from center 0.061 in 2-Flat widths of flanges and webs Flat width of Dim. a=A-(2.r+t) 0.995 in 3 Flat width of Dim. b= B-(2.r+t) 0.995 in I Calculation of IX E Il lement L, Length (in) Y, Distance to the center(in) L xY2 IX' Flanges 2.a 1.99 B/2-t/2 0.5925 0.6986 0.0000 l Web 2.b 1.99 0 0 0.0000 0.1642 Corners 4.0 0.597 b/2 +c 0.558 0.1859 0.0000 Sum _ 4.5769 1.1505 _ 0.8845 _ 0.1642 Calculation of ly I Element L, Length (in) X, Distance to the center(in) L x X2 lY Flanges 2.a 1.99 0 0 0.0000 0.1642 Web 2.b 1.99 A/2-t/2 0.5925 0.6986 0.0000 Corners 4.0 0.597 a/2 +c 0.558 0.1859 0.0000 fil Sum _ 4.5769 1.1505 _ 0.8845 0.1642 I 3-Section Properties 1- A= L x t, Gross Area 0.2975 in2 A„=A-n x t x (d+.0625) x 2 0.2244 in`` I 4-Allowable Axial Load I Pn=An x Fy 12.3406927 kips Sgt 1.67 r I Pa = P„/nt 1 7.38963632 I kips I I 5-Check Tension Stresses I Loads from Wind? Cbl=(P/Pa) 0.1432 NO Allowable Stress Unity 1 1 _ 0.1432 Section is OK 4j j I I IPThe max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation Check the effectiveness of the Web f, (ycg-Z)Fy/ycg 39.8345 ksi f2 -(B-ycg Z)Fy/ycg -39.4965 ksi y f2/f, -0.9915 k 4+2(1-41)3+2(1-0 23.7803 h/ belt 15.3077 1.0521(k)05 x(h/t) x(f1/E)(15 0.1213 r (1-0.22/X)/ X -6.6993 be 0.9950 in b1 be/(3-qy) 0.2493 in i b2 0.4975 in b�+b2 0.7468 in 2'web I 2(1/12)(b)3 0.1642 in4 S(Ly2) 2.6782 in4 (-)(SL)(ycg)2 1.8000 in4 I'x 1.0423 in4 Ix=I'x t 0.0678 in4 Sex=lx/ycg 0.1080 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 0.0640 in4 S, fullSx 0.1091 in4 L„ 0.36Cbit.(E I.G.j)0'5/(Fy. S,) 20.8557 ft Fe' Cbm.(E I.G.j)0.5/(L. Sf) 1574.2498 ksi I Allowable Bending Moment I Mnx 0.4502 kip.ft S 1.67 Ma = M./nb 0.26955237 kip.ft Check Stresses I Cmx 0.6-0.4*M,/MZ 0.6000 Loads from Wind? Cbl (P/ Pa) + (Cmx Mx/Ma 0.1500 ) 0 IN I Cb2 (P/Pa) + (Mx/Ma) 0.1501 Allowable Stress Unity I 1 Cb IMP/Pa) <= 0.15,Cb2,Cb,) 0.1501 Section is OK I I I I I I I. Nominal Buckling Stress J 3. KLx/rx 46.1286 KLY/ry 46.1286 Mir 46.1286 I Fe . n2. E/(KL/r)2 136.8302 ksi I. (Fy/Fe)°5 0.6045 1 Fn 42.9088 ksi Effective Area ( I effective width of compression flange w/t= a/t 15.3077 X. 1.0521(k)0'5 x (w/t) x (Fn/E)°.5 0.3071 r _ (1-0.22/X)/X 0.9235 - ae _ 0.9950 in effective width of web element w/t= b/t 15.3077 I 1.0521(k)05 x (w/t) x(Fn/E)°.5 0.3071 r (1-0.22 /X)/X 0.9235 3 be 0.9950 in Allowable Axial Load Ae Ae =A-2 x t x[(a-ae) + (b-b0)] • 0.29750123 in2 3 Pn Pn=A.X Fn 12.7654317 kips n` 1.8 Pa = Pn/c 7.0919 kips I Check Compression Stresses I Loads from Wind? Cbi I Cb1=(P/Pa) NO 0.1497 vs Allowable Stress Unity j 1 ii_ 0.1497 Section is OK Computing of Mnx I 3 By using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: 3 Element L, Length (in) y, Distance to top fiber(in) L.y L.y2 C. Flanges ae 0.995 t/2 0.0325 0.0323 0.0011 Web 2.b 1.99 B/2 0.625 1.2438 0.7773 C. Corners 2.0 0.298471 c+t/2 0.093015 0.0278 0.0026 T. Flanges ae 0.995 B-t/2 1.2175 1.2114 1.4749 T.Corners 2.0 0.298471 B-c 1.189 0.3550 0.4223 Sum 4.5769 3.1575 2.8703 2.6782 3 yc9= L.y/L 0.6271 Z=R+t 0.1275 in • 3 3 JOIST Web (comp.) Input Data Member Section 1.25x1.25x16ga YI tp A= Tube Width 1.25 in if Q • •� B = Tube Length 1.25 in ; j • • r7 R = Corner Inner Radius 0.0625 in $ I • t= Thickness 0.065 in -" " 0 6 KLx= Buckling around x-x 1.84 ft 4 • KLY Buckling around x-x 1.84 ft $ j • • E = Modulus of Elasticity 29500 ksi �•- J L° Fy= Yield Stress 50 ksi YI G = Shear Modulus 11300 ksi a FT -A - Calculated Parameter Applied Forces i 1- Properties of 90°corner M 0.0001 kip.ft r= R + t/2, Centerline of Dimension 0.095 in P 1.062 kips u = a. r/2, Arc Length _ 0.149 in c=0.637.r Distance of c.g. from center 0.061 _ in R: 2- Flat widths of flanges and webs Flat width of Dim. a= A- (2.r + t) 0.995 in Flat width of Dim. b= B - (2.r+ t) 0.995 in IV Calculation of Ix Element L, Length (in) Y, Distance to the center (in) L xY2 Ix' t•• Flanges 2.a 1.99 B/2 -t/2 0.5925 0.6986 0.0000 Web 2.b 1.99 0 0 0.0000 0.1642 Corners 4.0 0.597 b/2 + c 0.558 0.1859 0.0000 IF' Sum 4.5769 1.1505 0.8845 0.1642 Calculation of ly Li Element L. Length (in) X, Distance to the center (in) L x X2 ly' Irt, Flanges 2.a 1.99 0 0 0.0000 0.1642 Web 2.b 1.99 A/2 -t/2 0.5925 0.6986 0.0000 L� Corners 4.0 0.597 a/2 + c 0.558 0.1859 0.0000 Sum 4.5769 1.1505 0.8845 0.1642 E-c L. [ Section Properties A L x t 0.2975 in' t Ix t x ( L x Y2 +Ix') 0.0682 in4 ly t x (L x X2 +ly') 0.0682 in' E Sx lx/(B/2) 0.1091 in•S Sy ly/(A/2) 0.1091 in.1 rx (Ix/A)0.5 0.4787 in ry (ly/A)()' 0.4787 in i I i 31 3 The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation I I Check the effectiveness of the Web I fi (y,9-Z)Fy/yc9 41.2082 ksi I f2 -(B-yc9 Z)Fy/yc9 -40.9735 ksi Y f2/f i -0.9943 k 4+2(1-y)3+2(1-41) 23.8523 h/ belt 19.9697 t I 1.052/(k)°'5 x (h/t) x(f1/E)05 0.1608 r (1-0.22/X)I h -2.2916 be 3.2950 in b1 be/(3-W) 0.8249 in b2 _ 1.6475 in b,+b2 2.4724 in I 2 cab I - 2(1/12)(b)3 5.9623 in4 S(Ly2) 89.4356 in4 (-)(SL)(Ycy)2 59.7866 in4 l'x 35.6114 in4 Ix=1'x t 5.8759 in4 S 3 ex=lx/Ycg 2.9310 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 5.9027 in4 3 Sr fullSx 2.9542 in4 L„ 0.36Cbn.(E I.G.j)°5/(Fy. S,) 68.8245 ft Fe' Cbn.(E I.G.j)0.5/(L. Sf) 564.1498 ksi I I Allowable Bending Moment I Mnx 12.2127 kip.ft clb 1.67 Ma = Max/nb 7.31297989 kip.ft I Check Stresses Cmx 0.6-0.4"M,/M2 0.6000 Loads from Wind? Cbl (P/ Pa) + (Cmx Mx/Ma 0.5537 ) O r Cb2 (P/Pa) + (Mx/Ma) 0.9229 Allowable Stress Unity 1 Cb If((P/Pa) <= 0.15,Cb2,Cb,) 0.9229 Section is OK 1 1 . J I 1 if iii El . I I Nominal Buckling Stress I KLX/rx 131.0546 KLy/ry 123.7532 KL/r 131.0546 Fe 7(2. E/(KUr)2 16.9519 ksi !i; lc (Fy/Fe)°'S 1.7174 Fn 14.8668 ksi il I Effective Area I effective width of compression flange w/t= a/t 19.9697 IC A. 1.0521(k)°5 x (w/t) X (Fn/E)°5 0.2358 r (1-0.22 /X)/k 0.2843 ae 3.2950 in effective width of web element w/t= bit 19.9697 Fl I 1.0521(k)°'5 x(w/t) x(Fn/E)0'5 0.2358 ti r (1-0.22 /X)/a. 0.2843 be 3.2950 in t I Allowable Axial Load An Ae=A-2 x t x [(a-ae) + (b-be)] 2.45463438 in2 Pn Pn=Ae x Fn 36.4925041 kips s S2c 1.8 Pa = Pn/fin 20.2736 kips IC I Check Compression Stresses Loads from Wind? Cbi I Cb1=(P/Pa) NO 0.0000 Allowable Stress Unity I 1 0.0000 Section is OK._ III Computing of Mnx By using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: Element L, Length (in) y, Distance to top fiber(in) L.y L.y2 C. Flanges ae 3.295 t/2 0.0825 0.2718 0.0224 Web 2.b 6.59 B/2 2 13.1800 26.3600 C. Corners 2.0 0.848286 c+t/2 0.25449 0.2159 0.0549 T. Flanges ae 3.295 B-t/2 3.9175 12.9082 50.5677 T.Corners 2.0 0.848286 B-c 3.828 3.2472 12.4305 Sum _ 14.8766 10.0825 29.8231 89.4356 ycg= L.y/L 2.0047 Z=R+t 0.3525 in I I t: Column (INT) Input Data yl Member Section 4x4x8ga A=Tube Width 4 in j g B 3 = Tube Length 4 in I R= Corner Inner Radius 0.1875 in j y t=Thickness 0.165 in -"- ' ---.- 4.-.---• --" b B KLx Buckling around x-x 16.944 ft i 3 KLy= Buckling around x-x 16 ft I E = Modulus of Elasticity 29500 ksi Fy= Yield Stress 50 ksi vi 3 G = Shear Modulus 11300 ksi o A Calculated Parameter Applied Forces 1-Properties of 90°corner M 6.749 kip.ft r= R +t/2, Centerline of Dimension 0.270 in P _ 0.00001 kips u = n. r/2, Arc Length 0.424 in 3 c=0.637.r Distance of c.g. from center 0.172 in 2-Flat widths of flanges and webs Flat width of Dim. a=A-(2.r+t) 3.295 in Flat width of Dim. b= B-(2.r+t) 3.295 in Iild I Calculation of lx I 1 Element L, Length (in) Y, Distance to the center(in) L xY2 Ix Flanges 2.a 6.59 B/2-t/2 1.9175 24.2302 0.0000 Web 2.b 6.59 0 0 0.0000 5.9623 3 Corners 4.0 1.697 b/2 +c 1.819 5.6166 0.0000 Sum _ 14.8766 3.7370 29.8467 5.9623 Calculation of ly I 3 Element L, Length (in) X, Distance to the center(in) L x X2 ly' Flanges 2.a . 6.59 0 0 0.0000 5.9623 Web 2.b 6.59 A/2-t/2 1.9175 24.2302 0.0000 Corners 4.0 1.697 a/2 +c 1.819 5.6166 0.0000 Sum 14.8766 3.7370 29.8467 5.9623 Section Properties I j-A L x t 2.4546 in2 IX tx ( LxY2 +lx) 5.9085 in4 ly t x (L x X2 +lY) 5.9085 in4 3 Sx lx/(B/2) 2.9542 in3 Sy ly/(A/2) 2.9542 in rx (Ix/A)°.5 1.5515 in 3 ry (ly/A)0.5 1.5515 in 3 • 2 :i, Lir.; . The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation 6" Check the effectiveness of the Web I s f� (Ycg-Z)Fy/Ycg 45.3139 ksi f2 - (B-y c9-Z)F Y'Y// 9 -36.7508 ksi Y f2/fi -0.8110 k 4+2(1-W)3+2(1-u,) 19.5018 h/ belt 44.8750 Er c I 1.0521(k)0'5 x (h/t) x(f1/E)°'S 0.4190 r (1-0.22/A) /1, 1.1335 be 5.3850 in b1 be/(3-y/) 1.4130 in b2 2.6925 in b1+b2 4.1055 in C 2 lweb I 2(1/12)(b)3 26.0259 in4 S(Ly2) 313.5229 in4 (-)(SL)(Ycg)2 227.0817 in4 rx 112.4670 in4•Ix=I'xt 13.4960 in4 Y Sex=lx/Ycg 4.1135 in3 Cb=1.0 for combined axial load and bending moment c 1 2b2d2t/(b+d) 9.0929 in4 Sr fullSx 3.8871 in4 L„ 0.36Cbn.(E I.G.j)0'S/(Fy. SO 91.2066 ft ,L Fey Cbn.(E I.G.j)0.5/(L. Sf) 747.6147 ksi I Allowable Bending Moment Mnx 17.1394 kip.ft r ob 1.67 - Ma = Mnx/nb 10.2631188_ kip.ft Ir Check Stresses Cmx 0.6-0.4`M,/M2 0.6000 Loads from Wind? Cbt (P/Pa) + (Cmx Mx/Ma) 0.5880 NO C Cb2 (P/Pa) + (Mx/Ma) 0.9800 Allowable Stress Unity I 1 Cb If((P/Pa) <= 0.15,Cb2,Cbl) 0.9800 Section is OK t t • e • t I I_ r' I Nominal Buckling Stress I sc.. KLx/r, 90.1319 i KLy/ry 115.9903 KL/r 115.9903 �" Fe . K2. E/(KL/r)2 21.6411 ksi Ic (Fy/Fe)U5 1.5200 r 1. Fn 18.9792 ksi I Effective Area I I effective width of compression flange w/t= a/t 28.2083 A. 1.0521(k)05 x(w/t) x(Fn/E)°.5 0.3763 31. r (1-0.22/X)/A. 1.1039 ae 3.3850 in effective width of web element w/t= b/t 44.8750 1.052/(k)°'s x (w/t) x (Fn/E)0'S 0.5987 r _ (1-0.22/X)/X 1.0565 be 5.3850 in I Allowable Axial Load I Ae Ae=A-2 x t x [(a-ae) + (13-be)] 2.29142292 in2 1 Pn Pn=Ae x Fn 43.4893969 kips nc _ 1.8 Pa = Pn inc 24.1608 kips I Check Compression Stresses I Loads from Wind? Cbt I Cb1=(P/Pa) 0.0000 NO Allowable Stress Unity ) 1 - 0.0000 _ Section is OK I Computing of Mnx I I By using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: Element L, Length (in) y, Distance to top fiber(in) L.y L.y2 2 C. Flanges ae 3.385 t/2 0.06 0.2031 0.0122 Web 2.b 10.77 B/2 3 32.3100 96.9300 C. Corners 2.0 0.7775955 c+t/2 0.217658 0.1692 0.0368 3 T. Flanges ae 5.385 B-t/2 5.94 31.9869 190.0022 T.Corners 2.0 0.7775955 B-c 5.842 4.5430 26.5416 Sum _ 21.0952 - 15.0600 69.2122 _ 313.5229 3 yog= L.y/L 3.2809 Z=R+t 0.3075 in • I 1 3 t: ,, r II Column (EXT) I is Input Data Member Section 6x4x11ga r Li A=Tube Width 4 in i B= Tube Length 6 in i ■ = Corner Inner Radius 0.1875 in i • t=Thickness 0.12 in -"• -------4.------ ; •x b B CR KLX Buckling around x-x 16.944 ft I • KLy= Buckling around x-x 16 ft E= Modulus of Elasticity 29500 ksi •-- - Fy= Yield Stress 50 ksi Y G = Shear Modulus 11300 ksi o A Calculated Parameter Applied Forces 1-Properties of 90°corner M 10.058 kip.ft ir r= R +t12, Centerline of Dimension 0.248 in P 0.00001 kips u = n. r/2, Arc Length 0.389 in c=0.637.r Distance of c.g. from center 0.158 in . 2- Flat widths of flanges and webs Flat width of Dim. a=A-(2.r+t) 3.385 in Flat width of Dim. b= B-(2.r+t) 5.385 in r Calculation of lx Element L, Length (in) Y, Distance to the center (in) L xY2 IX Flanges 2.a 6.77 B/2 -t/2 2.94 58.5172 0.0000 Web 2.b 10.77 0 0 0.0000 26.0259 Corners 4.0 1.555 b/2 +c _ 2.850 12.6334 0.0000 Sum _ 19.0952 5.7902 71.1506 26.0259 Calculation of l„ Element L, Length (in) X, Distance to the center(in) L x X2 lY Flanges 2.a 6.77 0 0 0.0000 6.4643 Web 2.b 10.77 A/2-t/2 1.94 40.5340 0.0000 Corners 4.0 1.555 a/2 + c 1.850 5.3235 0.0000 Sum 19.0952 3.7902 _ 45.8575 6.4643 • • Section Properties A L x t 2.2914 in2 �` Ix tx( LxY2 +IX) 11.6612 in4 I„ tx(LxX2 +ly') 6.2786 in° Sx lx/(B/2) 3.8871 in Sy l /(A/2) 3.1393 in'' rx (lx/A)°.5 2.2559 in ry (l,./A)°.5 1.6553 in F • _ z rr tur 6 .1 The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation i. Check the effectiveness of the Web • f, (Ycg Z)Fy/Ycg 41.7262 ksi f2 - (B-ycg-Z)Fy/ycg -41.5306 ksi Y f2/f, -0.9953 k 4+2(1-03+2(1-yy) 23.8784 h/ belt 23.1722 I 1.0521(k)05 x(h/t) x(f1/E)°'S 0.1876 si r (1-0.22 /X)/X -0.9199 be 1.6684 in b1 be/(3-0 0.4176 in b2 0.8342 in • • b1+b2 1.2518 in 2 'web I - 2(1/12)(b)3 0.7740 in4 S(Ly2) 11.2794 in4 (-)(St-)(Ycg)2 7.5186 in4 l'x 4.5348 in4 Ix=1'0 0.3265 in4 Sex=lx/Ycg _ 0.3259 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 0.3344 in4 I Sr fullSx 0.3284 in4 Le 0.36C0.(E I.G.j)05/(Fy. SO 34.7430 ft Fey Cbrr.(E I.G.j)0.5/(L. Sf) 880.5512 ksi I Allowable Bending Moment I Mnx 1.3578 kip.ft 4b 1.67 3 Ma = Mnx/fib _0.81303531_ kip.ft Check Stresses I Cmx 0.6-0.4*M,/M2 0.6000 Loads from Wind? 3 Cbl _ (P/Pa) + (Cmx Mx/Ma - 0.3366 ) 0 r Cb2 (P/Pa) + (Mx/Ma) 0.3386 Allowable Stress Unity I- 1 - Cb If((P/Pa) <= 0.15,Cb2,Cb,) 0.3366 Section is OK - I I I 1 I I C . I Nominal Buckling Stress I K Lx/rx 84.2696 KLy/ry 84.2696 KL/r 84.2696 Fe T[2. E/(KL/r)2 40.9996 ksi IC (Fy/Fe)°.5 1.1043 Fn _ 30.0118 ksi I Effective Area I effective width of compression flange w/t=alt 23.1722 A. 1.0521(k)°'5 x (w/t) x (Fn/E)0'5 0.3888 r (1-0.22/X)/) 1.1166 ae 1.6684 _ in t effective width of web element w/t= b/t 23.1722 r I 1.0521(k)°5 x (w/t) x (Fn/E)°'S 0.3888 r _ (1-0.22/X) /X 1.1166 be 1.6684 in I Allowable Axial Load I t Ae Ae =A-2 x t x[(a-ae) + (13-ben 0.53922321 in2 Pn Pn=Ae x Fn 16.18306 kips If nc 1.8 Pa = Pn/mac 8.9906 kips 1 I Check Compression Stresses I Loads from Wind? Cbt I Cb1=(P/Pa) NO 0.3337 Allowable Stress Unity ] 1 0.3337 Section is OK IfI Computing of Mnx By using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: Element L, Length (in) y, Distance to top fiber(in) L.y L.y2 C. Flanges ae 1.6684 t/2 0.036 0.0601 0.0022 Web 2.b 3.3368 B/2 1 3.3368 3.3368 C. Corners 2.0 0.40780564 c+t/2 0.118683 0.0484 0.0057 T. Flanges ae 1.6684 B-t/2 1.964 3.2767 6.4355 c. T.Corners 2.0 0.40780564 B-c 1.917 0.7819 1.4991 Sum 7.4892 5.0360 _ 7.5039 11.2794 ycg= L.y/L 1.0020 Z=R+t 0.1658 in I 1 II BOW II I. I Input Data YI Member Section 2x2x15ga A=Tube Width 2 in 4. j B = Tube Length 2 in j ; 11: R= Corner Inner Radius 0.0938 in 1 • • • t=Thickness 0.072 in -"• ________.4._._._. ; .25 b 8 KL% Buckling around x-x 5.48 ft 1 I ■ KLY Buckling around x-x 5.48 ft 1 E= Modulus of Elasticity 29500 ksi - FY= Yield Stress 50 ksi Yj G = Shear Modulus 11300 ksi o A Calculated Parameter I I Applied Forces �' 1-Properties of 90 o corner M 0.004 kip.ft r= R +t/2, Centerline of Dimension 0.130 in P _ 3 _ kips , it u= n. r/2, Arc Length 0.204 in c=0.637.r Distance of c.g. from center 0.083 _ in 2- Flat widths of flanges and webs Flat width of Dim. a=A- (2.r +t) 1.6684 in Flat width of Dim. b= B- (2.r+t) 1.6684 in Calculation of I, Element L, Length (in) Y, Distance to the center(in) L xY2 lX Flanges 2.a 3.3368 B/2-t/2 0.964 3.1009 0.0000 Web 2.b 3.3368 0 0 0.0000 0.7740 3 Corners 4.0 0.816 b/2 + c 0.917 0.6857 0.0000 Sum 7.4892 1.8809 3.7865 _ 0.7740 ICalculation of ly Element L, Length (in) X, Distance to the center(in) L x X2 ly'Y Flanges 2.a _ 3.3368 0 0 0.0000 0.7740 Web 2.b 3.3368 A/2-t/2 0.964 3.1009 0.0000 Corners 4.0 0.816 a/2 +c _ 0.917 0.6857 0.0000 Sum _ 7.4892 1.8809 3.7865 0.7740 Section Properties A L x t 0.5392 in2 Ix t x ( L x Y2 +lX') 0.3284 in4 ly t x (L x X 2 +10 0.3284 in4 Sx Ix/(B/2) 0.3284 ins Sy ly/(A/2) 0.3284 in rx (Ix/A)°.5 0.7804 in I ry (ly/A)0.5 0.7804 in I I I 11 iri . Bottom Chord (Tension) Input Data I r1 1 f Member Section I 2x2x15ga I A=Tube Width 2 in �' I i = = Tube Length 2 in I I R = Corner Inner Radius 0.0938 in I i I I The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation i Check the effectiveness of the Web f, (ycg Z)Fy/ycg 41.7262 ksi Its f2 -(B-yc9-Z)Fy/yeg -41.5306 ksi Y f2/f, -0.9953 k 4+2(1-yf)3+2(1-y) 23.8784 h/ belt 23.1722 1.052/(k)05 x(h/t) x(f1/E)°5 0.1876 r (1-0.22/X)/ a. -0.9199 be 1.6684 in b1 be43-0 0.4176 in b2 0.8342 in b,+b2 1.2518 in 2 I web I - 2(1/12)(b)3 0.7740 in4 I. S(Ly2) 11.2794 in4 (-)(SL)(Ycg)2 7.5186 in4 I'x 4.5348 in4 Ix=l'xt 0.3265 in4 Se%=lx/ycg 0.3259 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 0.3344 in4 3 S, fullSx 0.3284 in4 L„ 0.36Cbn.(E I.G.j)05/(Fy. Sf) 34.7430 ft Fe' Cbn.(E I.G.j)0.5/(L. Sf) 3054.0636 ksi 3 Allowable Bending Moment Mnx 1.3578 kip.ft S2b 1.67 Ma = Mnx/Ob 0.81303531_ kip.ft Check Stresses Cmx 0.6-0.4*M1/M2 0.6000 Loads from Wind? Cb, (P/Pa) + (Cmx Mx/Ma) 0.9523 NO Cb2 (P/Pa) + (Mx/Ma) 0.9523 Allowable Stress Unity I 1 Cb If((P/Pa) <= 0.15,Cb2,Cb1) 0.9523 Section is OK I I I I I f'{ .:. Lai Job No Sheet o,,... . _._ F.;.,.; Sott::aro licensed t., PartTRUSS-POLY ANALYSIS r.r Job rule Atlantic Beach Ref ` By M.ALY DatE6-23 11 Chd Chem File INTERMEDIATE BOW.Stcl Datea me 12-Jan-2007 08:18 tPY Node Loads : 8 SEISMIC F-1 Node FX FY FZ MX MY MZ (Ib) (IL) (Ib) (kip-ft) (kip ft) (kip•ft) 35 4.000 - - - - - s 59 12.000 - - - - - 60 7.000 - - - - - 61 19.000 - - - - - 67 8.000 - - - - - F7 70 7.000 - - - - - 71 19.000 - - - - - *.. 94 4.000 - - - - - 97 12.000 98 7.000 - - - - - ,4 99 19.000 - - - - - imo 103 7.000 - - - - - € 104 19.000 - - - F Node Loads : 9 WIND C Node . FX FY FZ MX MY MZ • (Ib) (Ib) (lb) (kip(I) (kip II) (kip 11) 35 -254.000 508.000 - - - - F 59 -394.000 788.000 - - - - 394.000 788.000 - - - - 60 -487.000 975.000 - - - - 1. 61 -1.26E+3 2.51E+3 - - - - 67 -254.000 508.000 - - - - 2 254.000 508.000 - - - - VIM 70 487.000 975.000 - - - - - 17 71 1.26E+3 2.51E+3 - - - - 94 254.000 508.000 - - - - [...+ 97 -394.000 788.000 - - - - 394.000 788.000 - - - - 1F-.T. 98 487.000 975.000 - - - - c 99 1.26E+3 2.51E+3 - - - - ti. 103 -487.000 975.000 - - - - 104 -1.26E+3 2.51E+3 - - - - 2 Mii i: • Print Time/Date:29/04/2014 14:55 STAAD.Pro V8i 20.07.05.15 Pont Run 7 of 9 I ■ 411111Ittt•tt•■ I Job No rSheetNo Rev _� Software licensed to PaIITRUSS-POLY ANALYSIS Job Title Atlantic Beach Ref By M.ALY Dat€6-23-11 Chd Client File INTERMEDIATE BOW.Std Date/Time 12-Jan-2007 08:18 Node Loads : 10 WIND D 1. Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kipit) (kip'ft) (kip-ft) 35 -169.000 339.000 - - - - 59 -263.000 525.000 - - - - 263.000 525.000 - - - - II 60 -325.000 650.000 - - - - 61 -837.000 1.67E+3 - - - - 67 -169.000 339.000 - - - - 169.000 339.000 - - - - 70 325.000 650.000 - - - - - 71 837.000 1.67E+3 - - - - 94 169.000 339.000 - - - - 97 -263.000 525.000 - - - - 263.000 525.000 - - - - 98 325.000 650.000 - - - - II99 837.000 1.67E+3 - - - - 103 -325.000 650.000 - - - - 104 -837.000 1.67E+3 Node Displacement Summary a. Node L/C X Y Z Resultant rX rY rZ (in) (in) (in) (in) (rad) (rad) (rad) Max X 99 32:0.6D+0.6W3 0.023 0.057 0.000 0.061 0.000 0.000 -0.000 Min X 61 32:0.6D+0.6W3 -0.023 0.057 0.000 0.061 0.000 0.000 0.000 Max Y 66 32:0.60+0.6W3 -0.002 0.058 0.000 0.058 0.000 0.000 0.000 Min Y 66 12:D+L 0.001 -0.057 0.000 0.057 0.000 0.000 -0.000 Max Z 35 11:D 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 Min Z 35 11:D 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 Max rX 35 11:D 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 Min rX 35 11:D 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 Max rY 35 11:D 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 Min rY 35 11:D 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 Max rZ 103 32:0.6D+0.6W3 -0.017 0.032 0.000 0.037 0.000 0.000 0.001 Min rZ 70 32:0.6D+0.6W3 0.017 0.032 0.000 0.037 0.000 0.000 -0.001 Max Rst 61 32:0.6D+0.6W3 -0.023 0.057 0.000 0.061 0.000 0.000 0.000 3 3 I , . .., Print Time/Date:29/04/2014 14:55 STAAD.Pro V8i 20.07.05.15 Print Run 8 of 9 I I Job No Sheet No Rev it,',:: t ,....p.. ..,. r.......2.1 Software licensed to PartTRUSS-POLY ANALYSIS Job Title Atlantic Beach Ref By M.ALY Date-23-11 Chd Client F1e INTERMEDIATE BOW.st(1Datellime 12-Jan-2007 08:18 7 Li Beam Force Detail Summary T Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A. ri Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz (ft) (Ib) (Ib) (Ib) (kip ft) (kip ft) (kip"ft) Max Fx 143 12:D+L 0.000 3.3E+3 0.038 0.000 0.000 0.000 -0.000 Min Fx 78 32:0.6D+0.6W3 0.000 -2.93E+3 -2.224 0.000 0.000 0.000 -0.008 Max Fy 89 32:0.60+0.6W3 0.000 -2.89E+3 5.541 0.000 0.000 0.000 0.007 Min Fy 89 12:D+L 0.000 3.3E+3 -4.990 0.000 0.000 0.000 -0.006 Max Fz 76 11:D 0.000 1.03E+3 0.011 0.000 0.000 0.000 -0.000 Min Fz 76 11:D - 0.000 1.03E+3 0.011 0.000 0.000 0.000 -0.000 Max Mx 76 11:D 0.000 1.03E+3 0.011 0.000 0.000 0.000 -0.000 71:'; Min Mx 76 11:D 0.000 1.03E+3 0.011 0.000 0.000 0.000 -0.000 Max My 76 11:D 0.000 1.03E+3 0.011 0.000 0.000 0.000 -0.000 Min My 76 11:D 0.000 1.03E+3 0.011 0.000 0.000 0.000 -0.000 t , Max Mz 89 12:D+L 5.483 3.3E+3 -4.990 0.000 0.000 0.000 0.021 Min Mz 89 32:0.6D+0.6W3 5.483 2.89E+3 5.541 0.000 0.000 0.000 -0.023 rr Reaction Summary Horizontal Vertical Horizontal Moment Node L/C FX FY FZ MX MY MZ } (Ib) (Ib) (Ib) (kip-ft) (kip ft) (kip ft) Max FX 35 12:D+L 2.18E+3 2.69E+3 0.000 0.000 0.000 0.000 Min FX 94 12:D+L -2.18E+3 2.69E+3 0.000 0.000 0.000 0.000 IC Max FY 67 12:D+L -0.004 5.38E+3 0.000 0,000 0.000 0.000 Min FY 67 32:0.6D+0.6W3 0.004 -4.74E+3 0.000 0.000 0.000 0.000 Max FZ 35 11:D 680.632 832.659 0.000 0.000 0.000 0.000 Min FZ 35 11:D - 680.632 832.659 0.000 0.000 0.000 0.000 IF Max MX 35 11:D 680.632 832.659 0.000 0.000 0.000 0.000 Min MX 35 11:D 680.632 832.659 0.000 0.000 0.000 0.000 Max MY 35 11:D 680.632 832.659 0.000 0.000 0.000 0.000 Min MY 35 11:D 680.632 832.659 0.000 0.000 0.000 0.000 Max MZ 35 11:D 680.632 832.659 0.000 0.000 0.000 0.000 Min MZ 35 11:D 680.632 832.659 0.000 0.000 0.000 0.000 IF I I IPPrint Time/Date:29/04/2014 14:55 STAAD.Pro V8i 20.07.05.15 Pnnt Run 9 of 9 ' i I. . Job No .-Sheet No Rev A INT-DIAG _. PartTRUSS-POLY ANALYSIS Software licensed to Job Title Atlantic Beach Ref I 8Y M.ALY Dat(6-23-11 Chd Client File INTERMEDIATE BOW.stc Date/Time 12-Jan-2007 08:18 is: Beam Force Detail Summary Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A. II Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (kip ft) (kip-ft) (kip"ft) Max Fx 86 32:0.6D+0.6W3 0.000 0.723 0.000 0.000 0.000 0.000 0.000 Min Fx 86 16:D+0.45W2+ 0.000 -0.541 0.000 0.000 0.000 0.000 0.000 Max Fy 86 11:D 0.000 -0.160 0.000 0.000 0.000 0.000 0.000 Min Fy 86 11:D 0.000 -0.160 0.000 0.000 0.000 0.000 0.000 Max Fz 86 11:D 0.000 -0.160 0.000 0.000 0.000 0.000 0.000 Min Fz 86 11:D 0.000 -0.160 0.000 0.000 0.000 0.000 0.000 Max Mx 86 11:D 0.000 -0.160 0.000 0.000 0.000 0.000 0.000 Min Mx 86 11:D 0.000 -0.160 0.000 0.000 0.000 0.000 0.000 Max My 86 11:D 0.000 -0.160 0.000 0.000 0.000 0.000 0.000 Min My 86 11:D 0.000 -0.160 0.000 0.000 0.000 0.000 0.000 Max Mz 86 11:D 0.000 -0.160 0.000 0.000 0.000 0.000 0.000 Min Mz 86 11:D 0.000 -0.160 0.000 0.000 0.000 0.000 0.000 I 1 1 I 1 I 1 I Print Time/Date:29/04/201414:51 STAAD.Pro V8i 20.07.05.15 Print Run 1 of 1 I I riiiip....., Job No Sheet No Rev f . INT-BOW Software licensed to PartTRUSS-POLY ANALYSIS Job Title Atlantic Beach Ref By M.ALY oa46-23.11 Chd Ghent File INTERMEDIATE BOW.stclDate/Time 12-Jan-2007 08:18 LI Beam Force Detail Summary Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A. Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz i (ft) (kip) (kip) (kip) (kip-ft) (kip-ft) (kip-ft) Max Fx 143 12:0+L 0.000 3.303 0.000 0.000 0.000 0.000 -0.000 Min Fx 78 32:0.6D+0.6W3 0.000 -2.927 -0.002 0.000 0.000 0.000 -0.008 Max Fy 89 32:0.6D+0.6W3 0.000 -2.890 0.006 0.000 0.000 0.000 0.007 Min Fy 89 12:D+L 0.000 3.299 -0.005 0.000 0.000 0.000 -0.006 Max Fz 76 11:D 0.000 1.029 0.000 0.000 0.000 0.000 -0.000 Min Fz 76 11:D - 0.000 1.029 0.000 0.000 0.000 0.000 -0.000 I Max Mx 76 11:D 0.000 1.029 0.000 0.000 0.000 0.000 -0.000 Min Mx 76 11:D 0.000 1.029 0.000 0.000 0.000 0.000 -0.000 Max My 76 11:D 0.000 1.029 0.000 0.000 0.000 0.000 -0.000 Min My 76 11:D 0.000 1.029 0.000 0.000 0.000 0.000 -0.000 i Max Mz 89 12:D+L 5.483 3.299 -0.005 0.000 0.000 0.000 0.021 Min Mz 89 32:0.6D+0.6W3 5.483 -2.890_ 0.006 0.000 0.000 0.000 -0.023 I I I . I I I I 1 . Print Time/Date:29/04/2014 14:5t STAAD.Pro V8i 20.07.05.15 Print Run 1 of 1 I Firig Job No Sheet No Rev INT-BOTTOM 1 Software licensed to PartTRUSS-POLY ANALYSIS Job Title Atlantic Beach Ref By M.ALY DatE6-23-11 Chd Client f11e INTERMEDIATE BOW.stc Date/rime 12-Jan-2007 08:18 I li Beam Force Detail Summary Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression. Distance d is given from beam end A. li Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (kip'ft) (kip ft) (kip-ft) Max Fx 161 15:D+0.45W1+ 0.000 0.489 0.001 0.000 0.000 0.000 0.005 Min Fx 159 15:D+0.45W1+ 0.000 -0.452 -0.000 0.000 0.000 0.000 -0.002 Max Fy 161 32:0.6D+0.6W3 0.000 0.210 0.002 0.000 0.000 0.000 0.007 Min Fy 162 32:0.6D+0.6W3 0.000 0.210 -0.002 0.000 0.000 0.000 -0.013 Max Fz 159 11:D _ 0.000 -0.023 0.000 0.000 0.000 0.000 0.000 Min Fz 159 11:D 0.000 -0.023 0.000 0.000 0.000 0.000 0.000 Max Mx 159 11:D 0.000 -0.023 0.000 0.000 0.000 0.000 0.000 Min Mx 159 11:D 0.000 -0.023 0.000 0.000 0.000 0.000 0.000 Max My 159 11:D 0.000 -0.023 0.000 0.000 0.000 0.000 0.000 I Min My 159 11:D 0.000 -0.023 0.000 0.000 0.000 0.000 0.000 Max Mz 162 12:D+L 0.000 -0.077 0.002 0.000 0.000 0.000 0.013 Min Mz 162 32:0.6D+0.6W3_ 0.000 0.210 -0.002 0.000 0.000 0.000 -0.013 II 0 I I I ii• I I I Print Time/Date:29/04/2014 14:52 STAAD.PrO V8i 20.07.05.15 Print Run 1 of 1 I I i --4 Job No Sheet No Rev n i P. INT-WEB Software licensed to PartTRUSS-POLY ANALYSIS Job rue Atlantic Beach Ref 1 By M.ALY Date6-23-11 Chd Chest File INTERMEDIATE BOW.stcl oaterrime 12-Jan-2007 08:18 g Beam Force Detail Summary f Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A. Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (kip ft) (kip ft) (kip-ft) Max Fx 157 12:D+L 0.000 0.471 0.000 0.000 0.000 0.000 0.000 Min Fx 157 32:0.6D+0.6W3 0.000 -0.687 0.000 0.000 0.000 0.000 0.000 Max Fy 84 11:D 0.000 -0.061 0.000 0.000 0.000 0.000 0.000 Min Fy 84 11:D 0.000 -0.061 0.000 0.000 0.000 0.000 0.000 Max Fz 84 11:D 0.000 -0.061 0.000 0.000 0.000 0.000 0.000 Min Fz 84 11:D - 0.000 -0.061 0.000 0.000 0.000 0.000 0.000 i. Max Mx 84 11:D 0.000 -0.061 0.000 0.000 0.000 0.000 0.000 Min Mx 84 11:D 0.000 -0.061 0.000 0.000 0.000 0.000 0.000 Max My 84 11:D 0.000 -0.061 0.000 0.000 0.000 0.000 0.000 Min My 84 11:D 0.000 -0.061 0.000 0.000 0.000 0.000 0.000 Max Mz 84 11:D 0.000 -0.061 0.000 0.000 0.000 0.000 0.000 Min Mz 84 11:D 0.000 -0.061 0.000 0.000 0.000 0.000 0.000 I I I I I ;c I I IPPrint Time/Date:29/04/2014 14:52 STAAD.Pro V8i 20.07.05.15 Print Run 1 of 1 I ■ I • I (I INT-BOW I Input Data I YI Member Section 2x2x15ga A=Tube Width 2 in 4" j B= Tube Length 2 in i R= Corner Inner Radius 0.0938 in I $ • t=Thickness 0.072 in KLx= Buckling around x-x 5.48 ft I KLy= Buckling around x-x 5.48 ft E = Modulus of Elasticity 29500 ksi •-• Fy= Yield Stress 50 ksi Y G = Shear Modulus 11300 ksi 0 A 3 iCalculated Parameter Applied Forces 1-Properties of 90°corner M 0.000001 kip.ft r= R + t/2, Centerline of Dimension 0.130 in P 3.303 kips u = n. r/2, Arc Length 0.204 in c=0.637.r Distance of c.g. from center 0.083 in 2-Flat widths of flanges and webs Flat width of Dim. a= A-(2.r+ t) 1.6684 in Flat width of Dim. b= B -(2.r+ t) _ 1.6684 in Calculation of Ix Element L, Length (in) Y, Distance to the center(in) L xY2 Ix' Flanges 2.a - 3.3368 B/2 - 1/2 0.964 3.1009 0.0000 Web 2.b 3.3368 0 0 0.0000 0.7740 Corners 4.0 0.816 b/2 + c 0.917 0.6857 0.0000 Sum _ 7.4892 1.8809 3.7865 0.7740 Calculation of I,, Element L, Length (in) X, Distance to the center(in) L x X2 ly' Flanges 2.a 3.3368 0 0 0.0000 _ 0.7740 Web 2.b 3.3368 A/2 -112 0.964 3.1009 0.0000 Corners 4.0 0.816 a/2 +c 0.917 0.6857 0.0000 Sum _ 7.4892 1.8809 3.7865 _ 0.7740 Section Properties 3 A L x t 0.5392 in2 lx t x( L x Y2 +Ix') 0.3284 in4 3 IY t x(L x X2 +lY) 0.3284 in4 S, lx/(B/2) 0.3284 ins S., l.,/(A/2) 0.3284 in3 rx (Ix/A)°5 0.7804 in ry (lY/A)05 0.7804 in I • I 3 iiI.1 rr. Nominal Buckling Stress KLx/rx 84.2696 orli KLy/ry 84.2696 }r` KUr 84.2696 Fe i[2. E/(KUr)2 40.9996 ksi IC (Fy/Fe)°5 1.1043 C F0 30.0118 ksi G Effective Area effective width of compression flange w/t= alt 23.1722 0 X 1.052/(k)°5 x(w/t)x(F„/E)°5 0.3888 r (1-0.22/ A.)/ X 1.1166 - ae 1.6684 in 0 effective width of web element w/t= b/t 23.1722 1.0521(k)05 x(w/t)x(Fn/E)°5 0.3888 r (1-0.22/X)/ X 1.1166 be 1.6684 in illi r Allowable Axial Load Ae Ae =A -2 x t x[(a-ae)+ (b-be)] 0.53922321 in2 �� P„ Pn=Ae x F„ 16.18306 kips Fr nc 1.8 Li Pa = Pn inc 8.9906 kips Check Compression Stresses Loads from Wind? Cm I Cb1=(P/Pa) 0.3674 NO rig Allowable Stress Unity [ 1 ir; 0.3674 Section is OK Li Computing of Mnx By using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: Li. Element L, Length(in) y, Distance to top fiber(in) L.y L.y2 C. Flanges ae 1.6684 t/2 0.036 0.0601 0.0022 Web 2.b 3.3368 B/2 1 3.3368 3.3368 C. Corners 2.0 0.40780564 c+t/2 0.118683 0.0484 0.0057 T. Flanges ae 1.6684 B-t/2 1.964 3.2767 6.4355 T.Corners 2.0 0.40780564 B-c 1.917 0.7819 1.4991 Sum 7.4892 5.0360 7.5039 11.2794 ye9= L.y/ L 1.0020 Z=R+t 0.1658 in D I II The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation Check the effectiveness of the Web J fl (Ycg-Z)Fy/Ycg 41.7262 ksi f2 -(B-ycg-Z)Fy/ycg -41.5306 ksi Y f2/f1 -0.9953 k 4+2(1-gyp)3+2(1-W) 23.8784 h/ be/t 23.1722 I 1.0521(k)0'5 x(h/t)x((1/E)°5 0.1876 r (1-0.22/X)/X -0.9199 O. be 1.6684 in b1 be/(3-ii) 0.4176 in b2 0.8342 in b1+b2 1.2518 in 2 'web I 2(1/12)(b)3 0.7740 in4 S(Ly2) 11.2794 in4 (-)(S1 )(Ycg)2 7.5186 in4 I'x 4.5348 in4 Ix=1'xt 0.3265 in4 I: Sex=lx/Ycg 0.3259 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2U(b+d) 0.3344 in4 St fullSx 0.3284 in4 E„ 0.36C0.(E I.G.j)05/(Fy. Si) 34.7430 ft Fe' Cbtt.(E I.G.j)0.5/(L. Sf) 880.5512 _ ksi Allowable Bending Moment M„X 1.3578 kip.ft 3 nb 1.67 . Ma = M„X Mb 0.81303531 kip.ft II Check Stresses Cmx 0.6-0.4`M1/M2 0.6000 Loads from Wind? Cbl (P1 Pa) + (Cmx Mx/Ma ) 0.3674 NO Cb2 (P/Pa)+ (Mx/Ma) 0.3674 Allowable Stress Unity I 1 3 Cb If((P/Pa)<= 0.15,Cb2,C,,,) 0.3674 Section is OK 3 j j 3 j LI C . BOTTOM (COMP) E';''' I Input Data I Yi Member Section 2x2x15ga A=Tube Width 2 in A. I B= Tube Length 2 in i 1 R= Corner Inner Radius 0.0938 in • III t=Thickness 0.072 in KL% Buckling around x-x 10.38 ft • I KLY Buckling around x-x 10.38 ft I E Modulus= of Elasticity 29500 ksi -- I J Fy=Yield Stress 50 ksi `j G = Shear Modulus 11300 ksi 0 A II I Calculated Parameter II Applied Forces I 1-Properties of 90°corner M 0.011 kip.ft r= R + t/2, Centerline of Dimension 0.130 in P 0.489 kips u= n. r/2, Arc Length 0.204 in c=0.637.r Distance of c.g. from center 0.083 in 2- Flat widths of flanges and webs Flat width of Dim. a= A-(2.r+ t) 1.6684 in Flat width of Dim. b= B-(2.r+ t) 1.6684 in I Calculation of I,, I Element L, Length (in) Y, Distance to the center(in) L xY2 Ix' Flanges 2.a 3.3368 B/2 -t/2 0.964 3.1009 0.0000 t Web 2.b 3.3368 0 0 0.0000 0.7740 Corners 4.0 0.816 b/2 + c 0.917 0.6857 0.0000 Sum _ 7.4892 1.8809 _ 3.7865 _ 0.7740 ICalculation of 1„ I C Element L, Length(in) X, Distance to the center(in) L x X2 ly Flanges 2.a , 3.3368 0 0 0.0000 0.7740 6 Web 2.b 3.3368 A/2 -t/2 0.964 3.1009 0.0000 Corners 4.0 0.816 a/2 + c 0.917 0.6857 0.0000 Sum 7.4892 1.8809 3.7865 0.7740 I Section Properties A L x t 0.5392 in2 Ix tx( LxY2 +I%) 0.3284 in4 , g I„ t x(L x X2 +lY) 0.3284 in4 SX lx/(B/2) 0.3284 in 1 II Sy I /(A/2) 0.3284 in' rx (lx/A)0 5 0.7804 in ry (l,./A)°5 0.7804 in I El • I I Nominal Buckling Stress K Lx/rx 159.6202 KLy/ry 159.6202 KL/r 159.6202 Fe n2. E/(KUr)2 11.4274 ksi lc (Fy/Fe)°.5 2.0918 ', F„ _ 10.0218 ksi Effective Area effective width of compression flange wit= alt g 23.1722 A 1.052/(k)05 x(w/t)X(F„/E)°5 0.2247 r _ (1-0.22/X)/A 0.0922 ae 1.6684 in effective width of web element I w/t= b/t 23.1722 I 1.052/(k)0'5 x(w/t)X(F„/E)°.5 0.2247 . r (1-0.22/l)/ L 0.0922 ' be 1.6684 in Allowable Axial Load Ae 1 Ae =A-2 x t X[(a-ae)+ (b-be)] 0.53922321 in2 Pn P„=Ae X Fn 5.40398494 kips n` 1.8 I Pa = Pn inc 3.0022 kips Check Compression Stresses I Loads from Wind? Cm I Cb1=(P/Pa) 0.1629 NO Allowable Stress Unity I 1 III 0.1629 Section is OK Computing of M„x IBy using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: I Element L, Length(in) y, Distance to top fib er(in) L.y L.y 2 I C. Flanges ae 1.6684 t/2 0.036 0.0601 0.0022 Web 2.b 3.3368 B/2 1 3.3368 3.3368 C. Corners 2.0 0.40780564 c+t/2 0.118683 0.0484 0.0057 I T. Flanges ae 1.6684 B-t/2 1.964 3.2767 6.4355 T.Corners 2.0 0.40780564 B-c 1.917 0.7819 1.4991 Sum 7.4892 5.0360 7.5039 _ 11.2794 Ycg= L.y/L 1.0020 Z=R+t 0.1658 in I . 1 C;' El . The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation :: Check the effectiveness of the Web FT f 2 Z F 41.7262 ksi (Yc9 ) y/Ye9 f2 (B y,9 Z)Fy/ycq -41.5306 ksi y f2/f1 -0.9953 um rk 4+2(1-03+2(1-y)) 23.8784 h/ be/t 23.1722 1.052/(k)05 x(h/t)x(f1/E)°5 0.1876 Lil r (1-0.22 l X)/ a -0.9199 be 1.6684 in b, be/(3-T) 0.4176 in 0 b2 0.8342 in bi+b2 1.2518 in 2 l web I - 2(1/12)(b)3 0.7740 in S(Ly) 11.2794 in 4 11.11 (-)(SL)(Yc9)2 7.5186 in 4 I'x 4.5348 in4 Ix=1'x t 0.3265 in 4 Sex=lx/yc9 0.3259 in3 r: Cb=1.0 for combined axial load and bending moment Li j 2b2d2t/(b+d) 0.3344 in 4 Si fullSx 0.3284 in° L„ 0.36C0.(E I.G.j)05/(Fy. Si) 34.7430 ft r Fe' Cbrr.(E I.G.j)0.5/(L. Sf) 464.8767 ksi Allowable Bending Moment rt Mnx 1.3578 kip.ft r , 1 nb 1.67 ir" Ma = Mnx/t/b 0.81303531 kip.ft Check Stresses r Cmx 0.6 0.4"M,/M2 0.6000 Loads from Wind? Cbt (P/ Pa)+ (Cmx Mx/ Ma ) 0.1710 NO • Cb2 (P/Pa) + (Mx/Ma) 0.1764 Allowable Stress Unity I 1 r' Cb If((P/Pa) <= 0.15,Cb2,Cb,) 0.1710 Section is OK 0. HEIt ili ir rs-: ilio j I I Bottom Chord (Tension) I Input Data I rl 1 Member Section I 2x2x15ga I • A =Tube Width 2 in, 4" I i B = Tube Length 2 in I R 3. = Corner Inner Radius 0.0938 in I • t=Thickness 0.072 in • KLX= Buckling around x-x 10.75 ft j I S 3 1 KLy= Buckling around x-x 10.75 ft j E = Modulus of Elasticity 29500 ksi Fy= Yield Stress 55 ksi rl 1 G = Shear Modulus 11300 ksi a d = Bolt diameter 0.5 in A n = Number of bolts 1 I Calculated Parameter II Applied Forces I i 1- Properties of 90°corner - r=R + t/2, Centerline of Dimension 0.130 in P 0.452 kips u= n. r/2, Arc Length 0.204 in id c=0.637.r Distance of c.g. from center 0.083 in 2-Flat widths of flanges and webs Flat width of Dim. a=A-(2.r+ t) 1.6684 in Flat width of Dim. b= B-(2.r+ t) 1.6684 in Calculation of IX Element L, Length (in) Y, Distance to the center(in) L xY2 lX' j Flanges 2.a 3.3368 B/2 -t12 0.964 3.1009 0.0000 Web 2.b 3.3368 0 0 0.0000 0.7740 Corners 4.0 0.816 b/2 + c 0.917 0.6857 0.0000 Id Sum 7.4892 1.8809 3.7865 _ 0.7740 Calculation of ly Element L, Length (in) X, Distance to the center(in) L x X2 ly' Flanges 2.a 3.3368 0 0 0.0000 0.7740 Web 2.b - 3.3368 A/2 -t/2 0.964 3.1009 0.0000 Corners 4.0 0.816 a/2 + c 0.917 0.6857 0.0000 1 Sum _ 7.4892 1.8809 3.7865 0.7740 I 3-Section Properties I-A= L x t, Gross Area 0.5392 in2 An= A-nxtx(d+.0625)x2 0.4582 ina I 4-Allowable Axial Load I Pn=An x Fy 25.2022767 kips Ot 1.67 0 1 1 Pa = Pn/nt 1 15.0911836 1 kips il I 5-Check Tension Stresses I iiii Loads from Wind? Cb1=(P/Pa) 0.0300 NO el;Allowable Stress Unity I 1 . _ 0.0300 Section is OK Ili iii i' IF . (I DIAGONAL (comp.) II I Input Data p r! Member Section 2x2x15ga IP A=Tube Width 2 in e:' j B = Tube Length 2 in j R= Corner Inner Radius 0.0938 in i I iri t=Thickness 0.072 in -"- • -•---•- .- -•-- ;--" b e KLx= Buckling around x-x 11.35 ft i S KLy= Buckling around x-x 11.35 ft E = Modulus of Elasticity 29500 ksi •- A Fy=Yield Stress 50 ksi Yi lift"" G= Shear Modulus 11300 ksi o A IPI Calculated Parameter I( Applied Forces 1-Properties of 90°corner M 0.0001 kip.ft 6 r= R + t/2, Centerline of Dimension 0.130 in P 0.723 kips u n. r/2,Arc Length 0.204 in c=0.637.r Distance of c.g. from center 0.083 in 2-Flat widths of flanges and webs I Flat width of Dim. a=A-(2.r+ t) 1.6684 in Flat width of Dim. b= B -(2.r+ t) 1.6684 in Calculation of Ix I Element L, Length (in) Y, Distance to the center(in) L xY2 lx' Flanges 2.a 3.3368 B/2 -t/2 0.964 3.1009 0.0000 Web 2.b 3.3368 0 0 0.0000 0.7740 0 k Corners 4.0 0.816 b/2 + c _ 0.917 0.6857 0.0000 Sum 7.4892 1.8809 3.7865 _ 0.7740 I I I Calculation of lY Element L, Length(in) X, Distance to the center(in) L x X2 ly. Flanges 2.a _ 3.3368 0 0 0.0000 0.7740 Web 2.b 3.3368 A/2 -t/2 0.964 3.1009 0.0000 i" Corners 4.0 0.816 a/2 + c 0.917 0.6857 0.0000 Sum 7.4892 1.8809 3.7865 0.7740 Section Properties I A L x t 0.5392 in2 .. Ix tx( LxY2 +Ix') 0.3284 in4 lY t x(L x X2 +1;) 0.3284 in4 Sx lx/(B/2) 0.3284 in' Sy l,/(A/2) 0.3284 in rx (lx/A)°5 0.7804 in ry (IY/A)05 0.7804 in I 1 j . I 3 I Nominal Buckling Stress I KLx/rx 174.5366 KLy/ry 174.5366 ., KL/r 174.5366 Fe n2. E/(KUr)2 9.5576 ksi Ic (Fy/Fe)°5 2.2872 3 Fn 8.3820 ksi Effective Area I I effective width of compression flange w/t= alt 23.1722 X 1.0521(k)05 x(w/t)x(Fn/E)°.5 0.2055 r _ (1-0.22/X)/ X -0.3446 - ae _ 1.6684 in effective width of web element 3 wit. b/t 23.1722 I 1.0521(k)05 x(w/t)x(Fn/E)°'5 0.2055 - r _ (1-0.22/X)/ X -0.3446 3 be 1.6684 in I Allowable Axial Load I I Ae Ae =A-2 x t x[(a-ae)+ (b-be)] 0.53922321 in2 Pn Pn=Ae x Fn 4.51977811 kips Oc 1.8 I Pa = Pn inc 2.5110 kips I Check Compression Stresses I I Loads from Wind? Cbt J Cb1=(P/Pa) 0.2879 NO Allowable Stress Unity I 1 I 0.2879 Section is OK I Computing of Mnx I I By using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: I Element L, Length(in) y, Distance to top fiber(in) L.y L.y2 C. Flanges ae 1.6684 t12 0.036 0.0601 0.0022 Web 2.b 3.3368 B/2 1 3.3368 3.3368_ I C. Corners 2.0 0.40780564 c+t/2 0.118683 0.0484 0.0057 T. Flanges ae 1.6684 B-t/2 1.964 3.2767 6.4355 T.Corners 2.0 0.40780564 B-c 1.917 0.7819 1.4991 Sum 7.4892 5.0360 7.5039 11.2794 ycg= L.y/L 1.0020 Z=R+t 0.1658 in I per, ,-:. .'!.; . r'i. The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation I Check the effectiveness of the Web ' fi (ycg-Z)Fy/ycg 41.7262 ksi .1 f2 -(B-N-Z)Fy/ycg -41.5306 ksi Y f2/fi -0.9953 V i. k 4+2(1-w)3+2(1-w) 23.8784 1111 h/ belt 23.1722 I 1.052/(k)05 x(h/t)x(f1/E)°.5 0.1876 (= r (1-0.22/X)/ X -0.9199 be 1.6684 in III be/(3-■ ) 0.4176 in iiil b2 0.8342 in bi+bz 1.2518 in 2 l'web .1 - 2(1/12)(b)3 0.7740 in 4 S(Ly2) 11.2794 in 4 (-)(SL)(Ycg)2 7.5186 in 4 I'x 4.5348 in4 lir lx=l'x.t 0.3265 in 4 Sex=lx/Ycg 0.3259 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 0.3344 in4 Sf fullSx 0.3284 in 4 L„ 0.36C0.(E I.G.j)°5/(Fy. S1) 34.7430 ft f Fey Cbn.(E I.G.j)0.5/(L. Sf) 425.1472 ksi I Allowable Bending Moment I Mnx 1.3578 kip.ft �b 1.67 Ma = Mnx/S2b 0.81303531 kip.ft I Check Stresses I IP Cmx 0.6-0.4*M1/M2 0.6000 Loads from Wind? Cbl (P/ P0)+ (Cmx Mx/Ma ) 0.2880 NO • girl Cb2 (P/Pa) + (Mx/Ma) 0.2881 Allowable Stress Unity I 1 Cb If((P/Pa)<= 0.15,Cb2,Cb1) 0.2880 Section is OK II i I I I 1 ri 1 DIAGONAL(Ten.) Input Data olii I Member Section I 2x2x15ga I rt A=Tube Width 2 irr r. B = Tube Length 2 in R= Corner Inner Radius 0.0938 in i $• t=Thickness 0.072 in x ________.4._.____. . x KLx= Buckling around x-x 11.35 ft _ b a 3 • KLy Buckling around x-x 11.35 ft 1 E = Modulus of Elasticity 29500 ksi - i Fy=Yield Stress 55 ksi rl III G = Shear Modulus 11300 ksi d = Bolt diameter 0.5 in A n = Number of bolts 1 It Calculated Parameter Applied Forces 1-Properties of 90 corner - M 0.0001 kip.ft r= R + t/2, Centerline of Dimension 0.130 in P 0.541 kips u = n. r/2, Arc Length 0.204 in c=0.637.r Distance of c.g. from center 0.083 in 2-Flat widths of flanges and webs Flat width of Dim. a= A-(2.r+ t) 1.6684 in Flat width of Dim. b= B-(2.r+ t) 1.6684 in ICalculation of Ix Element L, Length(in) Y, Distance to the center(in) L xY2 Ix' Flanges 2.a 3.3368 B/2 -t/2 0.964 3.1009 0.0000 Web 2.b 3.3368 0 0 0.0000 0.7740 Corners 4.0 0.816 b/2 + c 0.917 0.6857 0.0000 Sum 7.4892 1.8809 3.7865 0.7740 ICalculation of ly I Element L, Length (in) X, Distance to the center(in) L x X2 Ir Flanges 2.a 3.3368 0 0 0.0000 0.7740 Web 2.b - 3.3368 A/2 -t/2 0.964 3.1009 0.0000 Corners 4.0 0.816 a/2 + c 0.917 0.6857 0.0000 it Sum 7.4892 _ 1.8809 3.7865 0.7740 3-Section Properties I A= L x t, Gross Area 0.5392 in2 A„=A-nxtx (d+.0625)x2 _ 0.4582 in" ofi I 4-Allowable Axial Load I P„=An x Fy 25.2022767 kips nt 1.67 Pa = Pn/Qt 1 15.0911836 I kips I 5-Check Tension Stresses I 1 Loads from Wind? Cb1=(P/Pa) 0.0358 NO Allowable Stress Unity I 1 0.0358 Section is OK • • I I I I CFS Version 7.0.0 Page 1 Section: Section 1.sct Cylindrical Tube 1.3150x0.083 1 Rev. Date: 4/29/2014 3:11:04 PM Printed: 4/29/2014 3:12:03 PM I I I I I I I I __it__ I I I I I I • I Section Inputs I 3. CFS Version 7.0.0 Page 2 .. Section: Section 1.sct ,V Cylindrical Tube 1.315r x0.083 Rev. Date: 4/29/2014 3:11:04 PM 3 Printed: 4/29/2014 3:12:03 PM Material: A1039 SS Grade 50 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0 in"6 Torsion Constant Override, J 0 in^4 IICylindrical Tube, Thickness 0.083 in Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Ir Outside dimensions, Closed shape Length - Angle Radius Web k Hole Size Distance li (in) (deg) (in) Coef. (in) (in) 1 1.3150 0.000 0.57450 None 0.000 0.0000 0.6575 2 1:3150 90.000 0.57450 None 0.000 0.0000 0.6575 il 3 1.3150 180.000 0.57450 None 0.000 0.0000 0.6575 4 1.3150 -90.000 0.57450 None 0.000 0.0000 0.6575 Full Section Properties II Area 0.32125 in^2 Wt. 0.0010922 k/ft Width 3.8704 in IIIx 0.06123 in^4 rx 0.43657 in Ixy 0.00000 in^4 Sx(t) 0.093120 in^3 y(t) 0.65750 in a 0.000 deg Sx(b) 0.093120 in^3 y(b) 0.65750 in li Height 1.31500 in Iy 0.06123 in"4 ry 0.43657 in Xo 0.00000 in Sy(1) 0.093120 in"3 x(1) 0.65750 in Yo 0.00000 in Sy(r) 0.093120 in^3 x(r) 0.65750 in jx 0.00000 in Width 1.31500 in jy 0.00000 in I1 0.06123 in"4 r1 0.43657 in I2 0.06123 in•^4 r2 0.43657 in Ic 0.12245 in^4 rc 0.61740 in Cw 0.000000 in"6 Io 0. 12245 in^4 ro 0.61740 in J 0. 12190 in"4 Fully Braced Strength - 2010 North American Specification - US (ASD) I Material Type: A1039 SS Grade 50, Fy=50 ksi Compression Positive Moment Positive Moment Pao 8.9235 k Maxo 3.4850 k-in Mayo 3.4850 k-in Ae 0.32125 in"2 Ixe 0.061226 in^4 Iye 0.061226 in"4 Sxe(t) 0.093120 in^3 Sye(l)' 0.093120 in^3 Tension Sxe(b) 0.093120 in"3 Sye(r) 0.093120 in^3 Ta 9.6182 k Negative Moment Negative Moment Maxo 3.4850 k-in Mayo 3.4850 k-in Shear Ixe 0.061226 in^4 Iye 0.061226 in"4 II Vay 3.0208 k Sxe(t) 0.093120 in^3 Sye(1) 0.093120 in^3 Vax 3.0208 k Sxe(b) 0.093120 in^3 Sye(r) 0.093120 in^3 il Member Check - 2010 North American Specification - US (ASD) I II I CFS Version 7.0.0 Page 3 .. Section: Section 1.sct Cylindrical Tube 1.3150x0.083 Rev. Date:4/29/2014 3:11:04 PM Printed: 4/29/2014 3:12:03 PM Material Type: A1039 SS Grade 50, Fy=50 ksi ' Design Parameters: Lx 7.460 ft Ly 7.460 ft Lt 7.460 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Cbx 1.0000 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None k4 0 k Red. Factor, R: 0 Lm 20.000 ft Loads: P Mx Vy My Vx (k) (k-in) (k) (k-in) (k) Entered 0.4710 0.0000 0.0000 0.0000 0.0000 Applied 0.4710 0.0000 0.0000 0.0000 0.0000 Strength 1.0838 3.4850 3.0208 3.4850 3.0208 Effective section properties at applied loads: Ae 0.32125 in^2 Ixe 0.061226 in^4 Iye 0.061226 in"4 Sxe(t) 0.093120 in"3 Sye(1) 0.093120 in"3 Sxe(b) 0.093120 in"3 Sye(r) 0.093120 in"3 i Interaction Equations NAS Eq. C5.2. 1-1 (P, Mx, My) 0.435 + 0.000 + 0.000 = 0.435 <= 1.0 NAS Eq. C5.2.1-2 (P, Mx, My) 0.053 + 0.000 + 0.000 = 0.053 <= 1.0 NAS Eq. C3. 3.1-1 (Mx, Vy) Sqrt(0.000 + 0.000)= 0.000 <= 1.0 NAS Eq. C3. 3.1-1 (My, Vx) Sgrt(0.000 + 0,000)= 0.000 <= 1.0 KL/r exceeds 200. I I I I • I I I . I a CFS Version 7.0.0 Page 1 Section: poly gutter.sct Mohamed Aly, PE Rough Brothers Inc. Rev. Date: 3/3/2014 11:12:15 AM By: Mohamed Aly, PE Printed: 4/10/2014 11:29:19 AM I 3 3 3 3 1 • I I I 1 Section Inputs I II: CFS Version 7.0.0 Page 2 4 Section: poly gutter.sct Mohamed Aly, PE Rough Brothers Inc. Rev. Date: 3/3/2014 11:12:15 AM By: Mohamed Aly, PE Printed: 4/10/2014 11:29:19 AM Material: A653 SS Grade 33 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi III Yield Strength, Fy 33 ksi Tensile Strength, Fu 45 ksi Warping Constant Override, Cw 0 in^6 Torsion Constant Override, J 0 in^4 IF • Part 1, Thickness 0.1242 in (10 Gage) Placement of Part from Origin: X to center of gravity 0 in IF Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) - (deg) (in) Coef. (in) (in) 1 1.8125 -52.500 0.31250 None 0.000 0.0000 0.9063 2 1.7500 -90.000 0.31250 None 0.000 0.0000 0.8750 3 3.6000 -16.000 0.31250 None 0.000 0.0000 1.8000 4 3.6000 16.000 0.31250 None 0.000 0.0000 1.8000 5 1.7500 90.000 0.31250 None 0.000 0.0000 0.8750 6 1.8125 52.500 0.31250 None 0.000 0.0000 0.9063 Full Section Properties illArea 1.7180 in^2 Wt. 0.0058412 k/ft Width 13.832 in Ix 2.722 in^4 rx 1.2588 in Ixy 0.000 in^4 III Sx(t) 1.0604 in^3 y(t) 2.5670 in a 90.000 deg Sx(b) 1.7060 in^3 y(b) 1.5956 in Height 4 . 1626 in Iy 14 .905 in^4 ry 2.9454 in Xo 0.0000 in Sy(l) 3.2842 in^3 x(1) 4.5383 in Yo -2.6053 in Sy(r) 3.2842 in^3 x(r) 4 .5383 in jx 0.0000 in Width 9.0765 in jy 5.1158 in Il 14 .905 iri^4 rl 2.9454 in I2 2.722 in^4 r2 1.2588 in Ic 17.627 in^9 rc 3.2031 in Cw 7.5981 in^6 Io 29.288 in^9 ro 9 .1289 in J 0.0088337 in^4 • IUFully Braced Strength - 2010 North American Specification - US (ASD) Material Type: A653 SS Grade 33, E'y=33 ksi Compression Positive Moment Positive Moment Pao 31.233 k Maxo 20.955 k-in Mayo 64.380 k-in Ae 1.7036 in^2 Ixe 2.722 in^4 Iye 14.821 in^4 Sxe(t) 1.0604 in^3 Sye(1) 3.2736 in^3 Tension Sxe(b) 1.7060 in^3 Sye(r) 3.2580 in^3 Ta 33.948 k Negative Moment Negative Moment Maxo 20.955 k-in Mayo 64.380 k-in Shear Ixe 2.722 in^9 Iye 14 .821 in^4 Vay 0.000 k Sxe(t) 1.0604 in^3 Sye(1) 3.2580 in^3 Vax 0.000 k Sxe(b) 1.7060 in^3 Sye(r) 3.2736 in^3 Section contains no web elements for vertical shear. i it CFS Version 7.0.0 Page 3 Section: poly gutter.sct Mohamed Aly, PE 111. Rough Brothers Inc. Rev. Date: 3/3/2014 11:12:15 AM By: Mohamed Aly, PE Printed:4/10/2014 11:29:19 AM Section contains no web elements for horizontal shear. '; Member Check - 2010 North American Specification - US (ASD) II Material Type: A653 SS Grade 33, Fy=33 ksi Design Parameters: Lx 12.000 ft Ly 12.000 ft Lt 12.000 ft II Kx 1.0000 Ky 1.0000 Kt 1.0000 Cbx 1.0000 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Top k4 0 k Red. Factor, R: 0 Lm 20.000 ft Loads: P Mx Vy My Vx (k) (k-in) (k) (k-in) (k) Entered 0.000 20.160 0.000 0.000 0.000 Applied 0.000 20.160 0.000 0.000 0.000 Strength 15.368 20.955 0.000 47.674 0.000 li IIEffective section properties at applied loads: Ae 1.7180 in"2 Ixe 2.722 in"4 Iye 14.905 in"4 Sxe(t) 1.0604 in"3 Sye(1) 3.2842 in"3 Sxe(b) 1.7060 in"3 Sye(r) 3.2842 in"3 li Interaction Equations NAS Eq. C5.2.1-1 (P, Mx, My) 0.000 + 0.962 i 0.000 = 0.962 <= 1.0 NAS Eq. C5.2.1-2 (P, Mx, My) 0.000 + 0.962 + 0.000 = 0.962 <= 1.0 NAS Eq. C3.3.1-1 (Mx, Vy) Sqrt(0.926 + 9.999)= 3.305 > 1.0 NAS Eq. C3.3. 1-1 (My, Vx) Sqrt(0.000 + 9.999)= 3.162 > 1.0 Section contains no web elements for vertical shear. II Section contains no web elements for horizontal shear. a II 1. 1 I 11 11 r - - - - - d d Y Y Y Y a) 0 0 0 0 c r N ,- N ,- 1' ) 0 CO fry° `O 4.0 U") = CO O 00 0o O CO co CO t` ,- c CO d' CO CO CO CO (O CO o � ° d v Lc; vv N: 444 V- — a) O CO CO CO Cfl CO CO CO CO 0) L ..4- C L (0 CO M (0 (0 CO CO CO E N O 00 00 co 00 00 00 CO 00 Co CO 00 00 00 00 cO 0) i.°- O 0 O m a) Z m a O R�, - U) d -o o) o 0 O) �? N O N U (N O (N (N V N N N — (p (0 CO (N CO CO !� CO CO CO aa) ) a) m N y m m CO !� CO CO 00 (D (9 O p- CO .0 C C F- C 41: O ❑ C C O 0 .O ▪ (n 0 o N .L--, Z U O O O) NO Q1 O O a) N O a) N w a) co co co ,� co co co L i Y r+ O C N 1_ L _ U) Cf) CO Lb It) L() a) U Q a) 'Cu' O Cn a) N ..o z C C a) N c N p J -CD U) a) U) _� L CO 'f O N -a U 0 E 0 co 0) co 00 O 00 00 a0 - L C a) N p O CO CO CO CO c0 CO (O CO a) Na Z v (n v v r v v v u) u) a) a 000 -a w W s ,. N CL M Y O M (0 N 00 0) co • O N- c- O 00 N d O V O) co V N- i M V )n O ° M O O O Ff LL x 1- N .- a- ,-- +- a- r- C 4 - , (0 (.() CO CC) LC) Li) 10 u) (f) a) LU co U) in v (1) (I) LO r. C C � � � C Y Y Y Y a- (f) O to 4.0 N U") U') (f) Q O O O O (7 0 0 0 FT 0 10 CA CD N N) N (N O (N (N (N ". It) .-- N c-,7- M O 'a' co (C) C N- co N. N - N N- !` N- O ' — p) co L co 0 0 0 0 0 r- O O O O O O O 0 0 0 0 O .0 F_ a) Q) : N V (N (N CO N N (N E a) �.., n.a L > o rn L L -o • L. C rT (/) N e a° N C -p U C (0 (D 00 (6 (9 (6 (6 (0 U) - Q) N 0 rn � rnrn sT a) ma) N C V to (n to (n O a) C o x x x x x x x x °F m N a) Y — C O N (N (N (N X 4- (N (N (N ct p p N ' N (N CO (N (N (N C e' a) F- U) N O (n 0 O) O N f9 (0 (6 a) _ $ _ ..,.. N C C_ N O a .c c (n (a O N Y6 0 3 L a E a) -O C m C u) (o O C p L 3 ,- 0 • O asP p U) aa) c (75%-a) n m .0 m _c U (a c is U n3 O -p O a) O c m- to 2 = N •.- a p 0 0O It! mwmv � 0 iN NN >- 5 o m0 E CM I! II 1, u U - u n F— o 0 O p E -O N co O N .„- LL LL LL LI CO J • m J 6 IL alb.. JOB TITLE Atlantic Beach ROUGH BROTHERS INC. JOB NO. 141010 a CALCULATED BY M.ALY,PE CHECKED BY WIND LOADS - PARALLEL TO THE RIDGE Truss Span = 31.50 ft Roof Slope )= 6 Height from Eave to Ridge= 7.88 ft Gable Glazing Height= 16.00 ft Gable Area exposed to wind= 462.0 sf Windward Wall Wind Pressure= 10.0 psf Leeward Wall Wind Pressure= 1.9 psf Number of Purlin per Slope= 3 Number of Spaces Between Purlin = 6 Horiz. Dist. B/W Purlin(x)= - 5.87 ft Bay Spacing(y)= 12.00 ft Length of Roof Brace(z)= 13.36 ft Total Windward Force = 9.20 kips Total Leeward Force= 1.72 kips I I 1 • I I I I I I I Sidewall BRACING FOR LATERAL LOADS - Number of sidewall = 2 Force to sidewall = 5.46 kips number of Bracing per wall= 3 i Force per Set of Bracing= 1.82 kips Height of Braced Bay= 16.00 ft Width of Braced Bay= 12.00 ft Length of Brace= 20.00 ft I Tension in Diagonat Brace= 3.03 kips Brace(Trial section)= 1.315 dia. 14 ga. Fy= 50 ksi F„ = 65 ksi IF Brace X-sectional Area(A)= 0.31 in2 Least Radius of Gyration(r) = 0.437 in Brace Thickness(t)= - 0.083 in i 0Bolt Diameter(d)= .500 in i Tensile Force in Brace due to Lateral Loads= 3.0 kip A = net Force,in 2*(d+.0625)*t 0.22 in2 Ab= bolt area,p*d2/4 0.20 in2 S2,=ASD Tension Factor 1.670 S)b=ASD Bearing Factor-AISI Section E3.3.1 2.500 Qs=ASD Shear Factor Table E3.4-1 2.400 F„„= Nominal Shear Strength Table E3.4-1 54 ksi (Assumes Threads INCLUDED Tall=Based on tension on net area,A*FylS2, 7.167 kips OK • Tall=Based on bearing on net area, 3*d*t*F„/S2b 6.474 kips OK Ta„=Based on Bolt shear strength,A*F,,,/S2s 4.418 kips I OK Use 3 sets @ interior sidewall iiUse 2 sets @ exterior sidewall I I I I 1 X-Braced Bent Analysis for Lateral Loads For 3-Story Bent Assuming Fully Braced, Tension-Only S ystem Job Name: Atlantic Beach Subject: Job Number: 141010 Originator: I Checker: j I Forces and Reactions:. L=I 6.00 ft. I Lateral Stor Loads (Bent Width) P3= 0.46 k 0.46 k A . . A Story Heights . -0.79 k � h3 =1 8.50 ft. Brace Angle3=54.78 0 - ,L3=10.4 ft. coo 1 SET I o • o• w P2 =1 0.91k I 1.37k � . • , ' ' • A NI- -NC • �1.78 k A £Y 1 SL-1 I h2 -I 5.04 ft. Brace Angle2=40.03 co ` ,L2=7.84 ft Ht= 19.02 ft. (Total Bent Height) v w P1 =I 0.91 k I A 2.28 k - v� • -3.08k A A h1 =1 5.48 ft. BraceAngle1=42.41 °' - L1=8.13 ft 2 SETS I M P(bot) =I 0.46 k I . 2_73 k = VC--, • y Member Force Sign Convention: +=Compression 6.00 ft. -=Tension Vertical Reaction Sign Convention: Upward=Compression RL = 3.87 k RR = 3.87 k Downward=Tension(Uplift) Bent Elevation I 1 I a 1 ill I I IMMO JOB nTLE GROWING UP GREENS LLC ir ROUGH ATLANTIC BEACH,FL BROTHERS INC. JOB NO. 141010 SHEET NO. userimr...... CALCULATED BY M.ALY,PE DATE CHECKED BY DATE Sidewall Girt Design Girt Span= 12.00 ft , Girt spacing= 4.00 ft Girt Cross Section 4x2x11 ga A= 1.2959 in2 Ix= 2.6015 ina ly= 1.1548 ina Sx= 1.3007 in3 Sy= 1.1548 in3 r„= 1.4169 in ry= 0.944 in I Wind Load on sidewall= 19.1 psf Moment Ma= 1.38 k.ft Allowable Me= 3.69 k.ft Flexure strength is OK check defeiction S,=U240= 0.60 in 5=5 W L4/384 El= 0.47 in deflection is OK ill I I I I I if I I 1 I . . . . . _. . . .... ... _ . , . . . , . __ _ ,. ., ... , . _..-Ji i 3 . Gable Girt Design Girt Span= 7.88 ft Girt spacing= 3.50 ft Girt Cross Section 2x2x15ga A= 0.5241 in? Ix 3 = 0.3454 in" ly= 0.3454 in' ' S.= 0.3454 ins Sy= 0.3454 in3 rx= 0.8117 in 11. ry= 0.8117 in Wind Load on girls= 16.6 psf Moment M„= 0.45 k.ft Allowable M,= 0.81 k.ft Flexure strength is OK • I I I I I I I I 1 I I I1 CENTER GABLE POST II L Input Data I yl Member Section 4x4x8ga A =Tube Width 4 in 4 i i S B= Tube Length 4 in I R= Corner Inner Radius 0.1875 in i • t=Thickness 0.165 in - . _•-•-.4.----- ---x- e B KLx= Buckling around x-x 26 ft i I KLy Buckling around x-x 26 ft i iii7 E = Modulus of Elasticity 29500 ksi •- J IF Fy= Yield Stress 50 ksi yl G = Shear Modulus 11300 ksi 0 A 6 I Calculated Parameter II Applied Forces 1-Properties of 90°corner M 6.63 kip.ft r= R + t/2, Centerline of Dimension 0.270 in P 0.00001 kips u n. r/2, Arc Length 0.424 in c=0.637.r Distance of c.g. from center 0.172 in 2-Flat widths of flanges and webs _ Flat width of Dim. a=A-(2.r+ t) 3.295 in Flat width of Dim. b= B-(2.r+ t) - 3.295 in E 1 Calculation of Ix Element L, Length(in) Y, Distance to the center(in) L xY2 Ix' Flanges 2.a 6.59 B/2 -t/2 1.9175 24.2302 0.0000 i Web 2.b 6.59 0 0 0.0000 5.9623 Corners 4.0 1.697 b/2 + c _ 1.819 5.6166 0.0000 Sum 14.8766 3.7370 29.8467 _ 5.9623 r I Calculation of I,, Element L, Length (in) X, Distance to the center(in) L x X2 ly Flanges 2.a _ 6.59 0 0 0.0000 5.9623 Web 2.b 6.59 A/2 -t/2 1.9175 24.2302 0.0000 Corners 4.0 1.697 a/2 + c 1.819 5.6166 0.0000 Sum 14.8766 _ 3.7370 29.8467 5.9623 • Section Properties I A L x t 2.4546 in2 Ix t x( L x Y2 +lx') 5.9085 in 4 ly t x(L x X2 +ly') 5.9085 in4 Sx Ix/(B/2) 2.9542 in3 Sy ly/(A/2) 2.9542 in3 rx (lx/A)°'5 1.5515 in ry (ly/A)0.5 1.5515 in I I I I` I I Nominal Buckling Stress ss KLx/rx 201.0989 I KLY/ry 201.09891:, KUr 201.0989 Fe 7E2. E/(KUr)2 7.1995 ksi Ic (Fy/Fe)°5 2.6353 I Fn 6.3140 ksi Effective Area I I. effective width of compression flange w/t= alt 19.9697 X 1.052/(k)°5 x(wit)x(Fn/E)°5 0.1537 r _ (1-0.22/A, /?, -2.8086 ae 3.2950 in effective width of web element w/t= b/t 19.9697 I 1.052/(k)0'5 x(w/t)x(Fn/E)°.5 0.1537 r (1-0.22/X)/X -2.8086 be 3.2950 in Allowable Axial Load I 3 Ae Ae =A-2 x t x[(a-ae)+ (b-bc)] 2.45463438 in2 Pn Pn=Ae x F„ 15.498471 kips S2c 1.8 3 Pa = Pn/Qc 8.6103 kips I Check Compression Stresses I Loads from Wind? Cbl I Cb1=(P/Pa) 0.0000 NO Allowable Stress Unity I 1 0.0000 Section is OK IComputing of Mnx I 1 By using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: Element L, Length (in) y, Distance to top fiber(in) L.y L.y2 C. Flanges ae 3.295 t12 0.0825 0.2718 0.0224 Web 2.b 6.59 B/2 2 13.1800 26.3600 C. Corners 2.0 0.848286 c+t/2 0.25449 0.2159 0.0549 T. Flanges ae 3.295 B-t/2 3.9175 12.9082 50.5677 T.Corners 2.0 0.848286 B-c _ 3.828 3.2472 12.4305 Sum 14.8766 10.0825 29.8231 89.4356 yc9= L.y/L 2.0047 Z=R+t 0.3525 in I I I il " The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation lif I Check the effectiveness of the Web fi (Yc9-Z)Fylycg 41.2082 ksi fz -(B-ycg-Z)Fy/ycg -40.9735 ksi Y fz/f, -0.9943 ii k 4+2(1-w)3+2(1-w) 23.8523 h/ belt 19.9697 1.0521(k)05 x(h/t)x(f1/E)°5 0.1608 i, r (1-0.22/X)/A. -2.2916 be 3.2950 in b, be/(3-w) 0.8249 in b2 1.6475 in b,+bz 2.4724 in 2 I Web I 2(1/12)(b)3 5.9623 in4 6 S(Ly2) 89.4356 in4 (-)(S1 )(ycg)z 59.7866 in4 I'x 35.6114 in4 Ix=1'x t 5.8759 in4 Sex=lx/Ycg 2.9310 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 5.9027 in4 Sr fullSx 2.9542 in4 L„ 0.36C0.(E I.G.j)05/(Fy. Si) 68.8245 ft ii Fe' Cbm.(E I.G.j)0.5/(L. Sf) 367.6521 ksi I Allowable Bending Moment I Mnx 12.2127 kip.ft - m 1.67 Ma - nx/S2b 7.31297989 kip.ft i I Check Stresses Cmx 0.6 0.4*M,/Mz 0.6000 Loads from Wind? Cb, (P/Pa)+ (Cmx Mx/Ma ) 0.5440 NO Cb2 (P/ Pa) + (Mx/Ma) 0.9066 Allowable Stress Unity I 1 Cb If((P/Pe)<= 0.15,Cb2,Cb,) 0.9066 Section is OK I I t IP I I 1• II Gable Column#2 Input Data vl Member Section 4x4x11ga • A=Tube Width 4 in /" I i B = Tube Length 4 in j ■ R = Corner Inner Radius 0.1875 in I • • t=Thickness 0.12 in -" - - - -+ - - - -" o e KLX Buckling around x-x 23.5 ft KLy= Buckling around x-x 23.5 ft I E= Modulus of Elasticity 29500 ksi A Fy= Yield Stress 50 ksi vi G = Shear Modulus _ 11300 _ ksi o A Calculated Parameter Applied Forces I 1- Properties of 90°corner M 5.4144 kip.ft r= R +t/2, Centerline of Dimension 0.248 in P 0.0001 kips u. 2 it. r/2, Arc Length 0.389 in c=0.637.r Distance of c.g. from center 0.158 _ in 2-Flat widths of flanges and webs i]Flat width of Dim. a=A- (2.r+t) 3.385 in Flat width of Dim. b= B- (2.r+t) 3.385 in I Calculation of Ix I 1 Element L, Length (in) Y, Distance to the center(in) L xY2 Ix fil Flanges 2.a 6.77 B/2-t/2 1.94 25.4796 0.0000 Web 2.b 6.77 0 0 0.0000 6.4643 Corners 4.0 1.555 b/2 +c 1.850 5.3235 0.0000 Sum 15.0952 3.7902 _ 30.8031 6.4643 I Calculation of ly I 3 Element L, Length (in) X, Distance to the center(in) L x X2 Iy' Flanges 2.a - 6.77 0 0 0.0000 6.4643 Web 2.b 6.77 A/2-t/2 1.94 25.4796 0.0000 3 Corners 4.0 1.555 a/2 +c 1.850 5.3235 0.0000 Sum _ 15.0952 3.7902 30.8031 6.4643 Section Properties I 2 A L x t 1.8114 in2 Ix t x ( L x Y2 +Iz) 4.4721 in4 Iv t x(L x X2 +I,) 4.4721 in4 3 Sx lx/(B/2) 2.2360 in Sy lv I(A/2) 2.2360 in r 3 x (Ix/A)o.s 1.5713 in ry (lv/A)05 1.5713 in 3 • 1 I t i - tI Nominal Buckling Stress I KLx/rx 179.4748 KLJry 179.4748 s KUr 179.4748 Fe n2. E/(KL/r)2 9.0389 ksi IF, Ic (Fy/Fe)ob 2.3519 Fn 7.9271 ksi i I Effective Area effective width of compression flange w/t= alt 28.2083 A 1.0521(k)0'5 x (w/t) x(Fn/E)°'S 0.2432 r (1-0.22/A)/A 0.3926 - ae 3.3850 _ in ip effective width of web element wit. b/t 28.2083 I 1.052/(k)05 x (w/t) x (Fn/E)05 0.2432 r _ (1-0.22/A)/A 0.3926 be 3.3850 in lif Allowable Axial Load I Ae Ae =A-2 x t x [(a-ae) + (b-be)] 1.81142292 in2 Pn Pn=Ae X Fn 14.3593332 kips nc _ 1.8 Pa = Pn Mc 7.9774 kips I Check Compression Stresses Loads from Wind? Cm I Cb1=(P/Pa) NO 0.0000 Allowable Stress Unity 1 0.0000 Section is OK IComputing of Mnx By using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: If Element L, Length (in) y, Distance to top fiber(in) L.y L.y2 C. Flanges ae 3.385 t/2 0.06 0.2031 0.0122 Web 2.b 6.77 B/2 2 13.5400 27.0800 C. Corners 2.0 0.7775955 c+t/2 0.217658 0.1692 0.0368 T. Flanges ae 3.385 B-t/2 3.94 13.3369 52.5474 T.Corners 2.0 0.7775955 B-c _ 3.842 2.9878 11.4801 ` Sum 15.0952 10.0600 30.2370 91.1565 I N.: L.y/L 2.0031 Z=R+t 0.3075 in ii 3 3: The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation 3 I Check the effectiveness of the Web fl (Ycg-Z)Fy/Ycg 42.3244 ksi Of- f2 -(B-ycg-Z)Fy/ycg -42.1701 ksi Y f2/f i -0.9964 k 4+2(1-W)3+2(1-yi) 23.9054 h/ bdt 28.2083 1.052/(k)05 x (h/t) x(f1/E)°5 0.2299 r (1-0.22/X)/X. 0.1872 g be 3.3850 in b1 be/(3-W) 0.8470 in b2 _ 1.6925 in b,+b2 2.5395 in 2 cab I 2(1112)(b)3 6.4643 in4 S(Ly2) 91.1565 in4 3 (-)(SL)(Ycg)2 60.5675 in4 I'x 37.0533 in- Ix=l'xt 4.4464 in4 Sex=lx/Ycg 2.2198 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 4.6543 in4 3 S, fullSx 2.2360 in4 L„ 0.36Cbn.(E I.G.j)05/(Fy. St) 70.2472 ft Fe' Cbn.(E I.G.j)0.5/(L. Sf) 415.1727 ksi id I Allowable Bending Moment I Mnx 9.2490 kip.ft nb 1.67 . Ma = Mnx/1b 5.53834736 kip.ft I Check Stresses Cmx 0.6-0.4*M,/M2 0.6000 Loads from Wind? 1 Cbl (P/Pa) + (Cmx Mx/Ma 0.5866 ) 0 lc% Cb2 (P/Pa) + (Mx/Ma) 0.9776 Allowable Stress Unity I 1 III Cb If((P/Pa) <= 0.15,Cb2,Cb,) 0.9776 Section is OK 1 1 I 1 I Ilr'' Job No Sheet Nc Re. r 0 r-A PA• - REACTIONS Software licensed to PartTRUSS-POLY ANALYSIS i i! Job Title Atlantic Beach Ref By M.ALY Date-23-11 Chd Client File MAIN BOW.std Date/Time 12-Jan-2007 07:39 Reactions rt. Horizontal Vertical Horizontal Moment Node L/C FX FY FZ MX MY MZ "4 (kip) (kip) (kip) (kipft) (kipit) (kipft) IP 37 11:D -0.004 1.709 0.000 0.000 0.000 0.011 i 12:D+L -0.015 5.449 0.000 0.000 0.000 0.039 .4. 13:D+BSL+DSL -0.004 1.709 0.000 0.000 0.000 0.011 14:D+USL -0.004 1.709 0.000 0.000 0.000 0.011 rl 15:D+0.45W1+ -2.479 -0.886 0.000 0.000 0.000 11.767 16:D+0.45W2+ -1.072 3.364 0.000 0.000 0.000 5.991 17:D+0.45W3+ 0.318 0.169 0.000 0.000 0.000 -0.817 18:D+0.45W4+ 0.746 1.587 0.000 0.000 0.000 -1.928 rr, 19:D+0.45W1+ -1.486 -0.858 0.000 0.000 0.000 7.057 20:D+0.45W2+ -1.064 0.559 0.000 0.000 0.000 5.970 6. 21:D+0.45W3+ 0.325 -2.636 0.000 0.000 0.000 -0.839 r , 22:D+0.45W4+ 0.753 -1.218 0.000 0.000 0.000 -1.950 23:D+0.45W1+ -1.486 -0.858 0.000 0.000 0.000 7.057 .0' 24:D+0.45W2+ -1.064 0.559 0.000 0.000 0.000 5.970 25:D+0.45W3+ 0.325 -2.636 0.000 0.000 0.000 -0.839 if^ 26:D+0.45W4+ 0.753 -1.218 0.000 0.000 0.000 -1.950 27:0+0.525E+0 -0.042 4.504 0.000 0.000 0.000 0.263 28:D+.0.525E+ -0.034 1.699 0.000 0.000 0.000 0.242 R 7 29:D+0.525E+0 -0.034 1.699 0.000 0.000 0.000 0.242 30:0.6D+0.6W1 -1.979 -2.397 0.000 0.000 0.000 9.401 31:0.6D+0.6W2 -1.416 -0.508 0.000 0.000 0.000 7.952 32:0.60+0.6W3 0.437 -4.768 0.000 0.000 0.000 -1.126 IFT 33:0.60+0.6W4 1.008 -2.877 0.000 0.000 0.000 -2.608 r 34:0.6D+0.7E -0.042 1.012 0 000 0.000 0.000 0.314 69 11:D -0.000 3.371 0.000 0.000 0.000 0.000 �p 12:D+L -0.000 10.747 0.000 0.000 0.000 0.000 X 13:D+BSL+DSL -0.000 3.371 0.000 0.000 0.000 0.000 i 14:D+USL -0.000 3.371 0.000 0.000 0.000 0.000 15:D+0.45W1+ -0.576 -3.193 0.000 0.000 0.000 4.264 FY 16:D+0.45W2+ -0.347 5.871 0.000 0.000 0.000 2.566 17:D+0.45W3+ 0.000 0.381 0.000 0.000 0.000 -0.000 i � 18:0+0.45W4+ -0.000 3.281 0.000 0.000 0.000 0.000 19:D+0.45W1+ -0.346 -2.559 0.000 0.000 0.000 2.559 oft 20:D+0.45W2+ -0.347 0.340 0.000 0.000 0.000 2.566 21:D+0.45W3+ 0.000 -5.151 0.000 0.000 0.000 -0.000 k. 22:D+0.45W4+ 0.000 -2.251 0.000 0.000 0.000 -0.000 1•7' 23:D+0.45W1+ -0.346 -2.559 0.000 0.000 0.000 2.559 24:D+0.45W2+ -0.347 0.340 0.000 0.000 0.000 2.566 �k 25:D+0.45W3+ 0.000 -5.151 0.000 0.000 0.000 -0.000 26:D+0.45W4+ 0.000 -2.251 0.000 0.000 0.000 -0.000 D., 27:D+0.525E+0 -0.017 8.910 0.000 0.000 0.000 0.123 •d 28:D+.0.525E+ -0.017 3.378 0.000 0.000 0.000 0.123 --,, 29:D+0.525E+0 -0.017 3.378 0.000 0.000 0.000 0.123 30:0.6D+0.6W1_ . -0.461 -5.884 0.000 0.000 0.000 3.412 IFPrint Time/Date.29/04/2014 14:18 STAAD.Pro V8i 20.07.05.15 Print R;,n of . t -11 all �1 - Job No Sheet No Rev REACTIONS M Software licensed to Part TRUSS-POLY ANALYSIS Job Title Atlantic Beach Ref 3 BY M.ALY Daft6-23-11 Chd client File MAIN BOW.std 'Date/Time 12-Jan-2007 07:39 1. Reactions Cont... Horizontal Vertical Horizontal Moment 3 Node L/C FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip it) (kip ft) 31:0.6D+0.6W2 -0.462 -2.019 0.000 0.000 0.000 3.421 3 32:0.6D+0.6W3 0.000 -9.340 0.000 0.000 0.000 -0.000 33:0.6D+0.6W4 0.000 -5.473 0.000 0.000 0.000 -0.000 34:0.6D+0.7E -0.022 2.032 0.000 0.000 0.000 0.164 96 11:D 0.004 1.709 0.000 0.000 0.000 -0.011 3.. 12:D+L 0.015 5.449 0.000 0.000 0.000 -0.039 :• 13:D+BSL+DSL 0.904 1.709 0.000 0.000 0.000 -0.011 14:D+USL 0.004 1.709 0.000 0.000 0.000 -0.011 2 15:D+0.45W1+ -1.442 -0.881 0.000 0.000 0.000 9.046 16:D+0.45W2+ -1.288 3.368 0.000 0.000 0.000 6.534 17:D+0.45W3+ -0.318 0.169 0.000 0.000 0.000 0.817 18:D+0.45W4+ -0.746 1.587 0.000 0.000 0.000 1.928 ;1 19:0+0.45W1+ -0.866 -0.855 0.000 0.000 0.000 5.430 20:D+0.45W2+ -1.296 0.563 0.000 0.000 0.000 6.555 21:D+0.45W3+ -0.325 -2.636 0.000 0.000 0.000 0.839 22:D+0.45W4+ -0.753 -1.218 0.000 0.000 0.000 1.950 3 23:D+0.45W1+ -0.866 -0.855 0.000 0.000 0.000 5.430 24:D+0.45W2+ -1.296 0.563 0.000 0.000 0.000 6.555 25:D+0.45W3+ -0.325 -2.636 0.000 0.000 0.000 0.839 2 3 6:D+0.45W4+ -0.753 -1.218 0.000 0.000 0.000 1.950 27:D+0.525E+0 -0.017 4.539 0.000 0.000 0.000 0.198 28:D+.0.525E+ -0.025 1.734 0.000 0.000 0.000 0.219 29:D+0.525E+0 -0.025 1.734 0.000 0.000 0.000 0.219 30:0.60+0.6W1 -1.158 -2.393 0.000 0.000 0.000 7.249 31:0.6D+0.6W2 -1.731 -0.502 0.000 0.000 0.000 8.748 32:0.6D+0.6W3 -0.437 -4.768 0.000 0.000 0.000 1.126 33:0.6D+0.6W4 -1.008 -2.877 0.000 0.000 0.000 2.608 • 34:0.6D+0.7E -0.037 1.058 _ 0.000 0.000 0.000 0.301 1 I I I • Print Time/Date:29/04/2014 14:18 STAAD.Pro V8i 20.07.05.15 Print Run 2 of 2 I For ext-column IF Company : Rough Brothers Inc. April 29, 2014 Designer : M.A1-Y Job Number : 141010 Atlantic Beach Checked By: IX Bolt X (in) Z(in) . 1 3.5 3.5 IF • , • 2 -3.5 3.5 1 ,3 1 3 3.5 -3.5 t: 4 -3.5 -3.5 .,spy` j'.9 S Z -0 Cy r > -1 iii J O �?? . } :1 . , . VI is in r :Y Geometry and Materials - Length 10. in Column Shape TU6X4X3 Anchor Bolt Diameter .5 in Width 10. in Column eX 0. in Anchor Bolt Material A307 Thickness .75 in Column eZ 0. in Anchor Bolt Fu 60.ksi Base Plate Fy 36. ksi Column to Edge Min(X) .5 in Anchor Bolt E 29000. ksi Base Plate E 29000. ksi Column to Edge Min (Z) .5 in AB Projected Length 2 in t Bearing Fp 2.101 ksi HSS Tube X-sides welded AB to AB Min Spacing 1 in Bearing Fc' 0. ksi HSS Tube Z-sides welded AB to Stiffner Min Spacing 1 in Pedestal Length 36 in Plain Base Plate Connection AB to Column Min Spacing 1 in Pedestal Width 36 in Vx Shear Lug NOT present AB to Edge Min Spacing 1 in Analyze Base Plate as Flexible Vz Shear Lug NOT present AB Row Min Spacing 1 in Fp Based on AISC J9 Criteria Coarse Solution Selected Priority is AB to Column Spacing Orr AISC ASD 9th Include Threads for AB Design r Square Base Plate Required AB Fv, Ft based on AISC Criteria irr" Loads t'*. P(k) Vx(k) Vz(k) Mx(k-ft) Mz(k-ft) Reverse DL 1.709 -.003 .008 No LL 3.74 - -.008 .021 No WL -3.423 -1.976 9.394 No EL -.019 -.047 .362 No Base Plate Stress and Bearing Result Li Base Plate Stress(ksi) Bearing Pressure (ksi) Description Load Sets Allowable ASIF U.C. Allowable ABIF U.C. AISC EQ.1 1DL 27. 1. .003 2.8 1. .017 AISC EQ.2 1 DL+1 LL 27. 1. .009 2.8 1. .054 AISC EQ.3(W) 1 DL+1 WL 35.991 1.333 .513 2.8 1. .562 AISC EQ.3(E) 1 DL+1 EL 35.991 1.333 .006 2.8 1. .041 ; AISC EQ.4(W) 1 DL+1 LL+1 WL 35.991 1.333 .462 2.8 1. .586 AISC EQ.4(E) 1 DL+1 LL+1 EL 35.991 1.333 .01 2.8 1. .074 RISABase Version 1.02 Z\En ineerin Pro1 ects\Commercia11141010 Atlantic Beach\Untitled.rbs] Page 1 I r I Company : Rough Brothers Inc. April 29, 2014 • Designer : M.ALY Job Number : 141010 Atlantic Beach Checked By: Bearing Contours 3 in .049 151 ® 1.574 ' id ■(ksi) , (ksi) (ksi) 0• o. 1 III O. 1DL 1DL+1LL 1 DL+1 WL Allowable : 2.8 ksi Allowable : 2.8 ksi Allowable : 2.8 ksi 3 U.C. : .017 U.C. :.054 U.C. : .562 .114 1.641 .208 ID In®(ksi) 11:, (ksi) �(ksi)ill O. 10. 1 Ai DL+1 EL 1 DL+1 LL+1 WL 1DL+1LL+1EL Allowable : 2.8 ksi Allowable : 2.8 ksi Allowable : 2.8 ksi U.C. : .041 U.C. :.586 U.C. : .074 Base Plate Stress Contour 078 in .252 al 18.41 (ksi) (ksi) `.. (ksi) 3 lin .1. .002 i ■.005 : ?' 0 1DL 1DL+1LL 1 DL+1 WL 3 Allowable : 27. ksi Allowable : 27. ksi Allowable : 35.991 ksi U.C. : .003 U.C. : .009 U.C. : .513 - al .212 ror ® 16.634 (ksi) (ksi) I (ksi) 1 ■.012 ■0. 1 ■.012 ii 1 DL+1 EL 1 DL+1 LL+1 WL 1DL+1LL+1EL Allowable : 35.991 ksi Allowable : 35.991 ksi Allowable : 35.991 ksi U.C. : .006 U.C. : .462 U.C. : .01 Ii iiii RISABase Version 1.02 {Z:\Engineering Projects\Commercia11141010 Atlantic Beach\Untitled.rbs) Page 2 iziiii NI I ir, Company : Rough Brothers Inc. April 29, 2014 Designer : M.ALY Job Number : 141010 Atlantic Beach Checked By: liri Anchor Bolt Results Description Load Sets Bolt Tens.(k) 'Vx(k) Vz(k) Ft(ksi) Fv(ksi) Unity L AISC EQ.1 1DL 1 0. 0. .00075 N.A. N.A. N.A. 2 0. 0. .00075 N.A. N.A. N.A. . 3 0. 0. .00075 N.A. N.A. N.A. . i 4 0. 0. .00075 N.A. N.A. N.A. AISC EQ.2 1 DL+1 LL 1 0. 0. .003 � N.A. N.A. N.A. 2 0. 0. .003 ! N.A. N.A. N.A. . _ 3 0. 0 .003 N.A. N.A. N.A. 4 0. 0. .003 I� N.A. N.A. N.A. AISC EQ.3�W� 1 DL+1 WL 1 8.486 0. -{- 495 I N.A. N.A. N.A. _ . L. 2 8.396 0. I .495 N.A. N.A. N.A. 3 0. 0. .495 N.A. N.A. N.A. 4 .057 0. .495 N.A. N.A. N.A. s AISC EQ.3(E) 1 DL+1 EL 1 .022 0. .012 N.A. N.A. N.A. if. ! 2 .022 0. .012 i N.A. N.A. N.A. 3 0. 0. .012 N.A. N.A. N.A. 4 0. 0. .012 N.A. N.A. N.A. AISC EQ.4(W) 1 DL+1 LL+1 WL 1 7.627 0. .497 N.A. N.A. N.A. 2 7.544 0. .497 N.A. N.A. N.A. 3 0. 0. .497 N.A. N.A. N.A. ' 4 0. 0. .497 N.A. N.A. N.A. AISC EQ.4(E) 1DL+1LL+1EL 1 0. 0. .014 N.A. N.A. N.A. 2 .002 0. .014 N.A. N.A. N.A. 3 0. 0. .014 N.A. N.A. N.A. 4 0. 0. .014 N.A. N.A. N.A. 11 ip 0 .. i i „..., RISABase Version 1.02 [Z:\Engineering Projects\Commercia11141010 Atlantic BeachlUntitled.rbsj Page 3 I 0 I For int-column Company : Rough Brothers Inc. April 29, 2014 :1.: Designer : M.ALY Job Number : 141010 Atlantic Beach Checked By: X 3 Bolt X (in) Z(in) S=F 1 3. 3. 1 3 2 -3. 3. I,. 3 3. -3. % 4 -3. -3. di M " ` d a> E Pc 3_ . 2' -!:,,.., °4,. 8 in 1 Geometry and Materials Length 8. in Column Shape TU4X4X3 Anchor Bolt Diameter .5 in 3 Width 8. in Column eX 0. in Anchor Bolt Material A307 Thickness .5 in Column eZ 0. in Anchor Bolt Fu 60. ksi Base Plate Fy 36.ksi Column to Edge Min (X) .5 in Anchor Bolt E 29000. ksi Base Plate E 29000. ksi Column to Edge Min (Z) .5 in AB Projected Length 2 in Bearing Fp 2.101 ksi HSS Tube X-sides welded AB to AB Min Spacing 1 in Bearing Fc' 0.ksi HSS Tube Z-sides welded AB to Stiffner Min Spacing 1 in Pedestal Length 36 in Plain Base Plate Connection AB to Column Min Spacing 1 in 1 Pedestal Width 36 in Vx Shear Lug NOT present AB to Edge Min Spacing 1 in Analyze Base Plate as Flexible Vz Shear Lug NOT present AB Row Min Spacing 1 in Fp Based on AISC J9 Criteria Coarse Solution Selected Priority is AB to Column Spacing AISC ASD 9th Include Threads for AB Design Square Base Plate Required AB Fv, Ft based on AISC Criteria Loads P(k) Vx (k) Vz(k) Mx (k-ft) Mz(k-ft) Reverse DL r 3.371 No LL I - 7.376 No WL r -13.792 -1.82 No EL [_ .014 -.05 .378 No Base Plate Stress and Bearing Result Base Plate Stress(ksi) Bearing Pressure (ksi) Description Load Sets Allowable ASIF U.C. Allowable AB IF U.C. AISC EQ.1 1DL 27. 1. .012 2.8 1. ! .051 f- - - AISC EQ.2 1 DL+1 LL 27. 1. .038 2.8 1. .16 1_AISC EQ.3(W) 1 DL+1 WL 35.991 1.333 .294 2.8 1. .745 AISC EQ.3(E) 1 DL+1 EL 35.991 1.333 .015 2.8 1. .096 AISC EQ.4(W) 1 DL+1 LL+1 WL 35.991 1.333 .086 2.8 1. .218 AISC EQ.4(E) 1 DL+1 LL+1 EL 35.991 1.333 .031 2.8 1. .205 1 RISABase Version 1.02 {Z:\Engineering ProjectslCommercia11141010 Atlantic Beach\Untitled-max uplift.rt@jage 1 I I C Company : Rough Brothers Inc. April 29, 2014 Designer : M.ALY Job Number : 141010 Atlantic Beach Checked By: `` Bearing Contours r .142 .447 . ®2.087 NM (k (ksi) • (ksi) (0 . . 0. •0. .0. C , k IS 1DL 1DL+1LL 1DL+1WL Allowable : 2.8 ksi Allowable : 2.8 ksi Allowable : 2.8 ksi L U.C. : .051 U.C. : .16 U.C. : .745 .269 .611 .573 C , ® (ksi) (ksi) ®(ksi) mom Illi O. 1 DL+1 EL 1 DL+1 LL+1 WL 1 DL+1 LL+1 EL Allowable : 2.8 ksi Allowable : 2.8 ksi Allowable : 2.8 ksi fvf U.C. : .096 U.C. : .218 U.C. : .205 IN' Base Plate Stress Contour rn r II 325 is 1.038 ® 10.587 d j ill: . (ksi) (ksi) .(ksi) Li ,s 037 .118 O. 1DL 1 DL+1 LL 1 DL+1 WL Allowable : 27. ksi Allowable : 27. ksi Allowable : 35.991 ksi U.C. : .012 U.C. : .038 U.C. : .294 - 1E1 .534 ® 3.094 — ®1.116 C ...(ksi) (ksi) (ksi)in• .034 O. .094,, ,, , + + + W 1DL+1EL 1DL 1LL 1 L 1DL+1LL+1EL Allowable : 35.991 ksi Allowable : 35.991 ksi Allowable : 35.991 ksi U.C. : .015 U.C. : .086 U.C. : .031 C C RISABase Version 1.02 [Z:\Engineering Projects\Commercial\141010 Atlantic Beach\Untitled-max uplift.rl ge 2 9 9 1 a C I Company : Rough Brothers Inc. April 29, 2014 Designer : M.ALY Job Number : 141010 Atlantic Beach Checked By: 1 Anchor Bolt Results Description Load Sets Bolt Tens.(k) Vx(k) Vz(k) Ft(ksi) Fv(ksi) Unity AISC EQ.1 1DL 1 .004 0. 0. N.A. N.A. N.A. 2 .004 0. 0. N.A. N.A. N.A. 1_ 3 . .004 0. 0. N.A. N.A. N.A. I 4 .004 0. 0. N.A. N.A. N.A. 3 , AISC EQ.2 1DL+1LL 1 .017 0. 0. N.A. ; N.A. N.A. { 2 .017 0. 0. N.A. N.A. N.A. 3 ; .017 0. 0. N.A. N.A. N.A. 4 .017 0. 0. N.A. N.A. N.A. AISC EQ.3(W) 1 DL+1 WL j 1 3.143 0. .455 N.A. N.A. N.A. ! 2 3.143 0. .455 N.A. N.A. N.A. 3 ' 3.143 0. .455 N.A. N.A. N.A. 4 3.143 0. .455 N.A. N.A. N.A. It AISC EQ.3(E) 1 DL+1 EL 1 1 .01 0. .012 N.A. N.A. N.A. 2 ! .01 0. .012 N.A. N.A. N.A. I. 3 .003 0. .012 N.A. N.A. N.A. 4 .003 0. .012 N.A. N.A. N.A. AISC EQ.4(W) 1 DL+1 LL+1 WL 1 .917 0. .455 N.A. N.A. N.A. 2 .917 0. .455 N.A. N.A. N.A. 3 .917 0. .455 N.A. N.A. N.A. 3 4 .917 0. .455 N.A. N.A. N.A. AISC EQ.4(E) 1 DL+1 LL+1 EL 1 , .018 0. .012 N.A. N.A. N.A. ' 2 .018 0. .012 N.A. N.A. N.A. 3 .016 0. .012 N.A. N.A. N.A. 4 ' .016 0. .012 N.A. N.A. N.A. I I I I I I 3 RISABase Version 1.02 {Z:\Engineering Projects\Commercial1141010 Atlantic Beach\Untitled-max uplift.rblgpge 3 Ili mil-9r' www.hilti.us Profis Anchor 2.4.5 Company: Page: 1 Specifier: Project: 141010 Atlantic Beach Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 4/29/2014 E-Mail: Specifier's comments:ext column 1 ill , 1 Input data , , r.. h i Anchor type and diameter: HIT-HY 200+HAS 5/8 • �.w. .. .+ Effective embedment depth: h 7.323 in. h 12.500 in "°""'MYiOO P el.opd= ( ef.lim4= ) Material: 5.8 Evaluation Service Report: ESR-3187 Issued I Valid: 4/1/2013 1 3/1/2014 Proof: design method ACI 318/AC308 Stand-off installation. et,=0.000 in.(no stand-off).t=0.750 in ir Anchor plate: I,x Iy x t= 10.000 in x 10.000 in x 0.750 in (Recommended plate thickness:not calculated) Profile: Rectangular HSS(AISC);(L x W x T)=6.000 in.x 4.000 in x 0.125 in. Base material: cracked concrete,4000,fc'=4000 psi;h=420.000 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,installation condition dry Reinforcement: tension:condition B,shear:condition B:no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C.D,E,or F) no Geometry[in.]&Loading[kip,ft.kip] Ir-, Z gOt F. i . - ce 0 iiii °`,_�1 o _r y 6 , -•" T :� -- X0.75 .- lig ,,,,, ,, ,.."-- , .• ' ° � II 9x: 1 f I ,.. . •• . . • ._ ., •..,„...... ...,„. • . . , ,, ss 0 . x Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003.2009 Hitti AG,FL-9494 Schaan Hilo is a registered Trademark of Hilti AG.Schaan 3 IMI`.TI 3.-;-- vvww.hilti.us Profis Anchor 2.4.5 Company: Page: 2 Specifier. Project: 141010 Atlantic Beach Address: Sub-Project I Pos.No: Phone I Fax: I Date: 4/29/2014 E-Mail: 2 Load case/Resulting anchor forces -- — -- — Load case:Design loads O 3 Tern 4 Anchor reactions[kip] • Tension force:(+Tension,-Compression) Anchor _Tension force Shear force Shear force x Shear force y 1 0.000 0.495 0.495 0.000 2 0.000 0.495 0.495 0.000 Dx 3 7.685 0.495 0.495 0.000 4 7.685 0.495 0.495 0.000 ` max.concrete compressive strain: 0.33(%o] max.concrete compressive stress: 1441 (psi] resulting tension force in(x/y)=(0.000/3.500): 15.369(kip] 01 resulting compression force in(x/y)=(0.000/-4.376): 13.484(kip] 40¢ _ Cnitipressinni, sr 3 Tension load II Load N„a[kip] Capacity,N„[kip] Utilization obj=N„a/,N„ Status Steel Strength' 7.685 10.650 73 OK Bond Strength" 15.369 15.412 100 OK Concrete Breakout Strength" 15.369. 18.184 85 OK anchor having the highest loading "anchor group(anchors in tension) 3.1 Steel Strength Nsa =ESR value refer to ICC-ES ESR-3187 41 Nsteet>Nua ACI 318-08 Eq.(D-1) Variables . n Ase,N[in.2) futa(psi) 1 0.23 72500 Calculations N,,,[kip] 16.385 Results Nsa[kip] 4isleet $Nsa[kip] Nua(kip] 16.385 0.650 10.650 7.685 1 I I • I I • I . Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG.FL•9494 Schwan Hilli is a registered Trademark of Hilti AG.Schwan .. 1 F■11`TI www.hilti.us Anchor 2.4.5 Company: Page: 3 Specifier Project: 141010 Atlantic Beach Address: Sub-Project I Pos.No.: il Phone I Fax: I Date: 4/29/2014 E-Mail: 3.2 Bond Strength eANa� N ICC-ES AC308 Eq. D-16b Nag =(^Nao-)tlfed,Na yrg,Na tYec,Na tltp,Na a0 q�( ) i Na9 >Noa ACI 318-08 Eq.(D-1) ANa =see ICC-ES AC308.Part D.5.3.7 ANao =S«.Na ICC-ES AC308 Eq.(D-16c) Scr,Na =20d Tk—°n`"5 3 he! ICC-ES AC308 Eq.(D-16d) 1450 Ca,Na =S Z a ICC-ES AC308 Eq.(D-16e) yred,Na =0.7+0.3(ca-a-:)5 1.0 ICC-ES AC308 Eq.(D-16m) Na yfg Na =iP9,Na0+ [( 11-\°l05•(1 -yfg,Na0)J'-1.0 ICC-ES AC308 Eq.(D-16g) Sp Na cc � 15 6 tlrg,NaO =Vn"[(Vft-1)' ( tk.c \ J >i 0 ICC-ES AC308 Eq.(D-16h) tk,max.c J Tk.max.c=n d h� er'1c _ ICC-ES AC308 Eq.(D-16i) 1 tltec Na = (1 + 2eN )51.0 ICC-ES AC308 Eq.(D-16j) Scoya/ yrp,Na =MAX(Ca—n"n Cv-t- )<1.0 ICC-ES AC308 Eq.(D-16p) Cac Cat Na0 =tk.c't:bond'R'd'het ICC-ES AC308 Eq.(D-160 Variables tk,c,urxx[Ps!) derw:rwr(in.) her[in.] ca,ipan[in.] sa,9[in_] n Tkc[Psi] 1880 0.625 7.323 �^ 7.000 2 1057 ir kc fc[psi] ect.H[in.] ec2.N[in.] cat[in.] K!xxa 17 4000 0.000 0.000 12.393 1.00 Calculations IF scow[in.] ccr,iw[in.] ANa[in.2] ANao[In_21 yred.Na tk,mex[Psl 14.232 7.116 302.17 202.54 1.000 1479 yfg,ntao Wg.Na IIect,Na tl eatxa 443,N4 Nag[kip] 6. 1.164 1.049 1.000 1.000 1.000 15.152 Results Nag(kip) •bond 4)Nag(kip] Nea[kip/ 23.711 0.650 - 15.412 15.369 0 . gi 1 • . Input data and results must be checked for agreement with the existing conditions and for plausibility! PROF IS Anchor(c 12003-2009 Hdb AG.FL-9494 Schaan Hilti is a registered Trademark of Huth AG Schaan 10 1 I•■111�'TI - www.hilti.us Profis Anchor 2.4.5 Company: Page: 4 Specifier: Project: 141010 Atlantic Beach Address: Sub-Project I Pos.No.: Phone I Fax: ] Date: 4/29/2014 E-Mail: 3.3 Concrete Breakout Strength , Noy = ( �)111ec.N Wed,N Wc.N 111cp,N NO ACI 318-08 Eq.(D-5) II: Nc,ga Nua ACI 318-08 Eq.(D-1) ANC see ACI 318-08.Part D.5.2.1,Fig. RD.5.2.1(b) ANCO =9 het ACI 318-08 Eq.(D-6) 1 19rec.N = (1 +2 eN/ 5 1.0 ACI 318-08 Eq.(D-9) 3 het yred,N =0.7+0.3(�a mn)5 1.0 ACI 318-08 Eq.(D-11) I 1.Shet 4rcp.N =MAX(Ea_min. 1.5hG1)5 1.0 ACI 318-08 Eq.(D-13) lac tae Nb =kc A.NV.heir ACI 318-08 Eq.(0-7) Variables het[in.] ec1.N[in.) " eaN[in.] ca.mn[in.] Wc.N 7.323 0.000 0.000 b 1.000 cac]in.] kc X fe[psi) 12.393 17 1 4000 Calculations ANC[in.2] AN [in.2] WecI.N 1(rec2,N yted.N Wcp,N Nb[kip) 632.64 479.38 1.000 1.000 1.000 1.000 21.198 Results , N.,0[kip] $concrete $Nctg[kip] Nee[kip] 27.976 - 0.650 18.184 15.369 I I I I I I I I Input data and results must be checked for agreement with the existing conditions and for plausibility, PROFIS Anchor(c)2003-2009 Hilt,AG.FL-9494 Schaan Hilti is a registered Trademark of Hilt,AG,Schaan a ii-mniairi www.hilti.us _ Profis Anchor 2.4.5 Company: Page: 5 Specifier: Project: 141010 Atlantic Beach Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 4/29/2014 E-Mail: i 4 Shear load IF Load V„,[kip] Capacity$V, [kip] Utilization Ifs=V,,,/4V„ _ Status Steel Strength' 0.495 5.898 9 OK Steel failure(with lever arm)* N/A N/A N/A N/A Pryout Strength(Concrete Breakout 1.980 51.688 4 OK Strength controls)" Concrete edge failure in direction' N/A N/A N/A N/A *anchor having the highest loading "anchor group(relevant anchors) ;'1 4.1 Steel Strength Vsa =ESR value refer to ICC-ES ESR-3187 0 Vsteei'V„a ACI 318-08 Eq.(D-2) Variables n Ase.v[in.2] f„ta[psi] 1 i 1 0.23 — 72500 Calculations Vsa[kip] 9.830 t Results i Vsa[kip] Gated Vsa[kip] V„,[kip] 9.830 0.600 5.898 0.495 4.2 Pryout Strength(Concrete Breakout Strength controls) VcP9 =kcp[(A w)wec,N wedN tlreN 4tcp.N Nb] ACI 318-08 Eq (D-31) m\./c4,,?V„a ACI318-08 Eq.(D-2) ANC see ACI 318-08,Part D.5.2.1,Fig.RD.5.2.1(b) Ago =91-6 ACI 318-08 Eq.(D-6) (.1 1 wec.N = +2 eN)5 1.0 ACI 318-08 Eq.(D-9) 3 her c.nee t wed.N =0.7+0.3(1 Sher)5 1.0 ACI 318-08 Eq.(D-11) ‘11,,,,M =MAX c_ ;,, 1.5hef`5 1.0 ACI 318-08 Eq.(D-13) Cec Cao 1 - Nb =kc X Nrie heir ACI 318-08 Eq.(D-7) Variables ——k�— har(in.] eot.N(in.] edfl [in.] Can(in.] . 2 7.323 0.000 0.000 �^ wN c in. kc fc(psi] c. ac I ] x 1.000 12.393 17 1 4000 IICalculations ANc(in.21 A [in.2] wect.N wee2,N gted.N wep.N Nb DM 834.90 479.38 1.000 1.000 1.000 1.000 21.198 Results Veep(kip] 4lcon©ete •Vcpo[kip] Vua[kip] 73.840 0.700 51.688 1.980 5 Combined tension and shear loads [3N - (;,, Utilization(3N,v(%l Status 0.997 0 084 1.000 91 OK II3riv_ON+13v)l 1.2<=1 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilo AG.FL-9494 Schaan Hilti is a registered Trademark of Hilti AG.Sthaan www.hilti.us Profis Anchor 2.4.5 Company: Page: 6 Specifier: Project: 141010 Atlantic Beach Address: Sub-Project I Pos. No.: Phone I Fax: j Date: 4/29/2014 E-Mail: - ---- ------ --- 6 Warnings • To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor.Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered.The anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the loading! • Condition A applies when supplementary reinforcement is used.Them factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout 0. Strength.Refer to your local standard. • Design Strengths of adhesive anchor systems are influenced by the cleaning method.Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions • The present version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications. Refer to the ICC-ES Evaluation Service Report(e.g.section 4.1.1 of the ICC-ESR 2322)for details. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! Fastening meets the design criteria! '' • 1 I I I a 1 • i 1 1 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003.2009 Hitti AG,FL-9494 Schaan Hilts is a registered Trademark of Hilts AG,Schaan 1m1`TI www.hilti.us Profis Anchor 2.4.5 Company: Page: 7 Specifier: Project: 141010 Atlantic Beach Address: Sub-Project I Pos.No.: IPhone I Fax: I Date: 4/29/2014 E-Mail 7 Installation data Anchor plate,steel.- Anchor type and diameter: HIT-HY 200+HAS,5/8 i Profile:Rectangular HSS(AISC);6.000 x 4.000 x 0.125 in Installation torque:0.060 ft.kip Hole diameter in the fixture:d,=0.688 in Hole diameter in the base material.0.750 in. ... Plate thickness(input):0.750 in. Hole depth in the base material:7.323 in. Recommended plate thickness:not calculated Minimum thickness of the base material:8.823 in. Cleaning Premium cleaning of the drilled hole is required a Y i 5.000 5.000 f - -- - 0 _ 0 m 0 3 • 4 li 0 0 ui 0 o —► Ix 0 00 ui 01 02 0 if .-; in 1.500 7.000 1.500 Coordinates Anchor in. Anchor x y c.,, c.x c-y c.y 1 : 1 -3.500 -3.500 - 2 3.500 -3.500 - - - - - 3 -3.500 3.500 - - - 4 3.500 3.500 - - - - Input data and results must be checked for agreement with the existing conditions and for plausibility, PROFIS Anchor(c)20032009 lids AG.FL•9494 Schaan Huh is a registered Trademark of Hdti AG.Schaan 3 1■416TI r: www.hitti.us Profis Anchor 2.4.5 Company: — Page: 8 Specifier: Project: 141010 Atlantic Beach Address: Sub-Project I Pos.No.: Phone I Fax: Date: 4/29/2014 E-Mail: 8 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations-in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hijti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you.Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. I 1 I I I I 1 1 I I Input data and results must be dtecked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c 12003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Sohaan 1■4II .-TiI www.hilti.us Anchor 2.4.5 Company: Page: 1 Specifier: . Project: 141010 Atlantic Beach Address: Sub-Project I Pos No Phone I Fax: 1 Date: 4/29/2014 E-Mail: Specifier's commentslint post I �Ir 1 Input data 'I HiLTI —r Anchor type and diameter: HIT-HY 200+HAS 1/2 Effective embedment de the h =4.409 in. h 10.000 in.) " "'T"'`00 p Nom- ((heckle(= Material: 5.8 Ir Evaluation Service Report: ESR-3187 Issued I Valid: 4/1/2013 I 3/1/2014 Proof: design method ACt 318/AC308 1c Stand-off installation: el,=0.000 in.(no stand-off);t=0.500 in. Anchor plate: Ix x ly x t=8.000 in.x 8.000 in.x 0.500 in.;(Recommended plate thickness:not calculated) Profile: Square HSS(AISC);(L x W x T)=4.000 in.x 4.000 in.x 0.125 in. Base material: cracked concrete,2500.fe'=2500 psi;h=420.000 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,installation condition:dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C.0,E.or F) no ti Geometry[in.]&Loading[kip,ft.kip] s Z 1 0 IC .41 C~~0 ip co 6 f--- �. _ :-- -X- \\ 0 1 ' 1 .,, ________ , . . • . _ ___,,,?, ,.... t ., Ell ''',,' ^ --t - ,... , i 4' + t ,O , . X • Input data and results must be checked for agreement with the existing conditions and for plausibility' PROFIS Anchor(c)2003-2009 Hilli AG,FL-9494 Schaan MI6 is a registered Trademark of Hilti AG.Schaan i I•411`.TI www.hilti.us Profis Anchor 2.4.5 Company: Page: 2 Specifier: Project: 1 141010 Atlantic Beach Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 4/29/2014 E-Mail: 0. III 2 Load case/Resulting anchor forces Load case:Design loads 0 7---\3 l,J4 Y Anchor reactions[kip] • Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 2.690 0.455 0.000 0.455 II 2 2.690 0.455 0.000 0.455 flx 3 2.690 0.455 0.000 0.455 Tension I 4 2.690 0.455 0.000 0.455 max.concrete compressive strain: -[q„] max.concrete compressive stress: -[psi] it resulting tension force in(x/y)=(0.000/0.000): 10.758[kip] resulting compression force in(x/y)=(0.000/0.000):0.000[kip] O 1 2 li 3 Tension load Load Nu,[kip] Capacity}N„[kip] Utilization ON=N„a/+N„ Status Steel Strength* 2.690 6.688 41 OK Bond Strength" 10.758 11.351 95 OK Concrete Breakout Strength" 10.758 10.796 100 OK •anchor having the highest loading "anchor group(anchors in tension) 3.1 Steel Strength Nsa =ESR value refer to ICC-ES ESR-3187 4)Nut?Nea ACI 318-08 Eq.(D-1) Variables n Ase.H[in.2] feu(psi) 1 0.14 72500 Calculations NSe[kip] 10.290 Results Nsa[kip] 4isteei - •Nsa[kip] Nua[kip] 10.290 0.650 6.688 2.690 1 I I 1 • I Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG.FL-9494 Schaan Ritti is a registered Trademark of Hilo AG.Schaal i i■IIuTI I www.hilti.us Profis Anchor 2.4.5 Company: Page: 3 Specifier: Project: 141010 Atlantic Beach Address: Sub-Project I Pos No: Phone I Fax: j Date: 4/29/2014 I E-Mail: 3.2 Bond Strength Nag =(ANao)Wed.Na grg.Na yrec.Na Wp.a Nao ICC-ES AC308 Eq.(0-16b) 4,Nag >Nua ACI 318-08 Eq.(D-1) ANa =see ICC-ES AC308,Part D.5.3.7 ANaO =S rNa ICC-ES AC308 Eq.(D-16c) 5er Ne =20d Tk'50 5 3 her 1450 ICC-ES AC308 Eq.(D-16d) Ory Na =s-2`'—a ICC-ES AC308 Eq.(D-16e) r tlred.Na =0.7+0.3(Gamin)5.1.0 ICC-ES AC308 Eq.(D-16m) Cc,Na 0.5 1 Wg,Na 'W9,Nao 4' [(Ste) •(1 tlrg.Naa),z 1.0 ICC-ES AC308 Eq.(D-16g) Su,Na t5 1 yrg Nao =,1171-[(sift-1)' ( Tk'` ) ]?1.0 ICC -ES AC308 Eq.(D-16h) Tk.max.c Tk.max.c=1[kcd Jhet-f� _ ICC-ES AC308 Eq.(D-16i) 1 li tlrec.Na = (1 +S eN/ �1.0 ICC-ES AC308 Eq.(D-16j) cr,Na t .Na =MAX(ca_mn ca.Na) 1 0 ICC-ES AC308 Eq (D-16p) Ip . 1. cac � Cac Nao =Tk.c->bord-n'd-her ICC-ES AC308 Eq.(D-16f) Variables Tk,c.onv[psi] danGwr(in•1 _ her[in-1 Ca.mia[in.] sa„g[in.] n Tk,c[Psi) 1880 0.500 4.409 °° 6.000 4 1051 kc _ fc[psi] ecru(in.) ec2,N[in.] Cac[in.] berm 17 2500 0.000 0.000 7.017 1.00 Calculations IF s«.Na[in.] c«.w[in-] ANa[in.21 _ ANaO[in.2] tyed.Na tk,max[psi! 11.385 5.693 302.25 129.63 1.000 1136 lug g,Neo Wg,Na yredt,Na Wer2,Na Wp,Na No[kip] 1.109 ag 1.030 1.000 •No 1.000 1.000 7.272 Results N [kip] N [kip] Nea[kip] 17.464 0.650 - 11.351 10.758 g , I g I I . Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hole AG,FL-9494 Schaan Hilti is a registered Trademark of Hdti AG,Schaan 3 I•1i11`TI www.hilti.us Profis Anchor 2.4.5 Company: . Page: 4 Specifier: Project: 141010 Atlantic Beach Address: Sub-Project I Pos.No.: ' Phone I Fax: I Date: 4/29/2014 E-Mail: 3.3 Concrete Breakout Strength , Nog =(ANC NCO)tlrec.N'Ired.N ttrc,N tpcp,N No ACI 318-08 Eq.(D-5) 0 Nog a IA„a ACI 318-08 Eq.(D-1) AN, see ACI 318-08,Part 115.2.1,Fig.RD.5.2.1(b) Awe =9 her ACI 318-08 Eq.(D-6) 1 '. tpeC,N = \1 +2 eN J<_1.0 ACI 318-08 Eq.(D-9) 3 her t(red.N =0.7+0.3( °)5 t.0 ACI 318-08 Eq.(D-11) I• 4rcv.N =MAX(ca-min 1.5het)5 1.0 ACI 318-08 Eq.(0-13) Cac � Cac Nb =kc A Nfr,heir ACI 318-08 Eq.(D-7) Variables hey lin.] eCI.N(in.] — ec2.N[in.] Can (in.] 'Vc.N 4.409 0.000 0.000 ^a 1.000 l' cac[in.] kc A. 4[psi] 7.017 17 1 2500 Calculations ANC(in.21 ANCo(in.2) Wec1,N tlrec2.N yred.N Wcp.N Nb(kip) 369.05 174.52 1.000 1.000 1.000 1.000 7.855 Results Nog(kip] $concrete 0 Ncbg[kip] No[kip] 16.610 0.650 10.796 10.758 I 1 I I • I I I I Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003.2009 Hilti AG,FL-9494 Schaan Hdti is a registered Trademark of Milli AG.Schaan 1r I4II..TI 6 www.hilti.us Anchor 2.4.5 Company: Page: 5 Specifier: Project: 141010 Atlantic Beach Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 4/29/2014 E-Mail: 4 Shear load J Steel Strength* Load V„,[kip] Capacity+Vn[kip] Utilization lk/=V„,/4,V„ Status 0.455 3.705 13 OK Steel failure(with lever arm)* N/A N/A N/A N/A IF Pryout Strength(Concrete Breakout 1.820 23.253 8 OK Strength controls)" Concrete edge failure in direction" N/A N/A N/A N/A •anchor having the highest loading "anchor group(relevant anchors) i4.1 Steel Strength Vs, =ESR value refer to ICC-ES ESR-3187 4i Vsieel>Vila ACI 318-08 Eq.(D-2) Variables ^' n Ase.v[in.21 fora[Psi] 1 0.14 – 72500 Calculations Vs,(kip] 6.175 Results Vsa[kip] steel Vsa[kip] V„,[kip] 6.175 0.600 3.705 0.455 4.2 Pryout Strength(Concrete Breakout Strength controls) ANc Vcpg -k p[(Awe)111ec.N 1110d,N 111c,N Wcp.N Nb] ACI 318-08 Eq.(D-31) Vc,,,,?V„ ACI 318-08 Eq.(D-2) I ANC see ACI 318-08,Part D.5.2.1,Fig.RD.5.2.1(b) ANto =91-1, ACI 318-08 Eq.(D-6) 1 y'ec.N 2 eN <1.0 ACI 318-08 Eq.(D-9) i 1 +3he1) 4led.N =0.7+0.3 (lCa'mrn)s 1.0 ACI 318-08 Eq (D-11) 1 5hi1 J 41„,,,,, =MAX(ca—'n, 1.She1)<1.0 - ACI 318-08 Eq.(D-13) Cac Cat 1 Nb =kc) NIK he15 ACI 318-08 Eq (D-7) Variables • kg, _ her[in.] ett.N[in.] et2.N[in.] ca ,„[in.] 2 4.409 0.000 k 0.000 X f c in. [psi] WaN ac[ 1 e e[p 1.000 7.017 17 1 2500 Calculations ANC lin.2) ANco(in.2l Wecl,N Wec2.N Wed.N Wm,N Nb[kip] 369.05 174.52 1.000 1.000 1.000 1.000 7.855 Results Vwg(kip] +coecmte $Vepy[kip) V„a[kip]____ 33.219 0.700 23.253 1.820 1 5 Combined tension and shear loads 13N (iv C Utilization pity[%l Status 0.996 0.123 1.000 94 OK Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c 121x 3-2009 Heti AG.FL-9494 Schaan Hilo is a registered Trademark of Mk AG,Schaan 3 I4IILMI www.hilti.us — --- _ Profis Anchor 2.4.5 Company:— — page: 6 Specifier: Project 141010 Atlantic Beach Address: Sub-Project I Pos.No.: Phone I Fax: Date: 4/29/2014 E-Mail: 6 Warnings • To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor.Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered.The anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the loading! • Condition A applies when supplementary reinforcement is used The factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Design Strengths of adhesive anchor systems are influenced by the cleaning method.Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions • The present version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications. Refer to the ICC-ES Evaluation Service Report(e.g.section 4.1 1 of the ICC-ESR 2322)for details. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! Fastening meets the design criteria! 111 1 1 1 • I 1 I 1 I I 1 Input data and results must be checked for agreement with the existing conditions and for plausibility' PROFIS Anchor(c 12003-2009 HMI AG.FL-9494 Schaal) Hitti is a registered Trademark of Hilo AG.Sawn I 10.41116-1-1 www.hilti.us Profis Anchor 2.4.5 Company: Page: 7 Specifier: Project: 141010 Atlantic Beach Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 4/29/2014 E-Mail: 7 Installation data if Anchor plate,steel:- Anchor type and diameter:HIT-HY 200+HAS, 1/2 Profile:Square HSS(AISC):4.000 x 4.000 x 0.125 in. Installation torque:0.030 ft.kip Hole diameter in the fixture:d,=0.563 in. Hole diameter in the base material:0.563 in Plate thickness(input):0.500 in. Hole depth in the base material:4.409 in. Recommended plate thickness:not calculated Minimum thickness of the base material:5.659 in. 1 Cleaning:Premium cleaning of the drilled hole is required ♦y 4.000 4.000 �_ -- • 1' 0 0 if K 3 4 .. __ 0 i . 0 0 v s r I O Cr •x . rD $g is - I Y 6 ' I 0 . 0 . V Q, 1 Q2 0 Ili a 0 • r. • a -. 1.000 _ 6.000 • 1.000 r t - .. Coordinates Anchor in. Anchor x y c-x c.x c-y c•y 1 -3.000 -3.000 - - - - 2 3.000 -3.000 - - - - 3 -3.000 3.000 - - - - 4 3.000 3.000 - - - - Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(Cl 2003-2009 Hilh AG,FL-9494 Schaan Hdti is a registered Trademark of KW AG,Schaan z .:,.. ,: 1: ILITIF www.nilti.us Profis Anchor 2.4.5 Company: Page: 8 Specifier: Project: 141010 Atlantic Beach Address: Sub-Project I Pos.No.: Phone I Fax: i Date: 4/29/2014 E-Mail: 8 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. 1• • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or • damaged data or programs,arising from a culpable breach of duty by you i i 1 1 1 i 1 • 1 i 1 1 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademadc of Hilb AG,Schaan f---.. A..0 O C) C ce 4., CD EC Cr C) a CN - WI 11 .. 0104 a) . . ,c ■ CS,1 Ill E .Fli, 12.- •-- TO co 04 0 O CI 0 Z 7 Z CO in 0,4 Ut 0 III r- n I 4 a Li .... vi , 0, C3 a, r , ,:t z-.) • . . . , c., N cv n i ..., . ul - el r-77. ..;-.-.; .z. za. ..0 .--; 0) ..; c; . z••••• or cz; 6 c., r--47.• h co > • 0 z O-_ lir 0 < F.I. F- r-. I. ..'. r?^. ,_.'• .c . , WI P re, ,,... . .--. • -tr i ,....,, -..-- u.:.- . .t.r., 2 v.. - C _ i F3 0 i a WO •-- Q. 0 E. ..• cr, a) 0 ?] .; • Z 6 • ' < Ill lii z it* 116. 4 Ti- I, t I, 4 imml 47. 'woo I o 1'. V` O K C U CO ix N UJ E co m a m m M C O n ° U..1 D mt I. N `t . n i --44 0 M y I M ' a i o I I O II- Tn- TN w Q V r- 1.5 . (75 03 G. Cr Q' m l7 N N 1 e O 1G ■ N V b . h M b n i N o N N N 0 I LO 7 eon ko anO p co h N. 0 N n N M II N N Q 0 o Nr) aq el Q N 0 M N m N 0 N N _ 10 N r N N • co o I i co M u i V=¢ r P W nr• O r o C U ^ r co o O Z o Q r ��^77 u ZaY N _, I, ¢ f_ Q L , 4 , CO E a` 1 I -w Job No Sheet No Rev • 141010 Part Soflvare licensed to Job Title Growing Up Greens Ref By Oate26-Jun-14 Chd Client ATLANTIC BEACH,FL File Structurel.std Ipate/rime 04-Mar-2007 13:58 . s Nodes Node X Y Z (ft) (ft) (ft) 1 0.000 0.000 0.000 3 15.750 7.875 0.000 i• 4 11.986 5.993 0.000 r, 5 7.809 3.905 0.000 6 3.632 1.816 0.000 7 10.085 0.000 0.000 8 5.273 0.000 0.000 9 12.891 3.901 0.000 10 0.000 -16.000 0.000 11 0.000 -0.927 0.000 ir 12 31.500 0.000 0.000 13 19.514 5.993 0.000 14 23.691 3.905 0.000 15 27.868 1.816 0.000 16 21.415 0.000 0.000 17 26.228 0.000 0.000 18 18.609 3.901 0.000 t 19 31.500 -16.000 0.000 20 31.500 -0.927 0.000 9 21 63.000 0.000 0.000 23 47.250 7.875 0.000 24 51.014 5.993 0.000 25 55.191 3.905 0.000 26 59.368 1.816 0.000 11 1 27 52.915 0.000 0.000 28 57.727 0.000 0.000 29 50.109 3.901 0.000 30 63.000 -16.000 0.000 i 6 31 63.000 -0.927 0.000 32 43.486 5.993 0.000 33 39.309 3.905 0.000 4 111 1 II 34 35.132 1.816 0.000 35 41.585 0.000 0.000 36 36.772 0.000 0.000 C , 37 44.391 3.901 _ 0.000 1 ir6 li IIPrint Time/Date:09/07/2014 11:20 STAAD.Pro V8i 20.07.05.15 Print Run 1 of 13 I I Job No Sheet No Rev .* 141010 Software licensed to Part Job Title Growing Up Greens Ref By DatE26-Jun-14 Chd Client ATLANTIC BEACH,FL File Structurel.std Date/Time 04-Mar-2007 13:58 Beams • Beam Node A Node B Length Property P j (ft) (degrees) 1 7 16 11.330 1 0 2 3 4 4.208 1 0 3 3 4 5 4.670 1 0 4 5 6 4.670 1 0 5 6 1 4.061 1 0 6 7 8 4.813 1 0 7 8 1 5.273 1 0 I:. 8 3 9 4.895 2 0 9 9 7 4.806 2 0 10 4 9 2.279 2 0 11 9 5 5.082 2 0 12 5 7 4.519 2 0 • 13 5 8 4.656 2 0 14 8 6 2.447 2 0 15 1 11 0.927 3 0 16 11 10 15.073 3 0 17 8 11 5.353 2 0 2 19 3 13 4.208 1 0 20 13 14 4.670 1 0 21 14 15 4.670 1 0 22 15 12 4.061 1 0 23 16 17 4.813 1 0 24 17 12 5.272 1 0 25 3 18 4.895 2 0 26 18 16 4.806 2 0 27 13 18 2.279 2 0 28 18 14 5.082 2 0 29 14 16 4.519 2 0 30 14 17 4.656 2 0 31 17 15 2.447 2 0 32 12 20 0.927 3 0 33 20 19 15.073 3 0 34 17 20 5.353 2 0 35 27 35 11.330 1 0 36 23 24 4.208 1 0 37 24 25 4.670 1 0 38 25 26 4.670 1 0 39 26 21 4.061 1 0 40 27 28 4.813 1 0 41 28 21 5.273 1 0 42 23 29 4.895 2 0 43 29 27 4.806 2 0 44 24 29 2.279 2 0 45 29 25 • 5.082 2 0 46 25 27 4.519 2 0 • Print Time/Date:09/07/2014 1120 STAAD.Pro V8i 20.07.05.15 Print Run 2 of 13 i Job No Sheet No Rev 141010 Pad � Software licensed to Job Title Growing Up Greens Ref ir. By Datc26-Jun-14 Chd Client ATLANTIC BEACH,FL File Structurel.std Date/rime 04-Mar-2007 13:58 IBeams Cont... Beam Node A Node B Length Property) p (ft) .(degrees) 47 25 28 4.656 2 0 ' 1111 48 28 26 2.447 2 0 49 21 31 0.927 3 0 ism` 50 31 30 15.073 3 0 51 28 31 5.353 2 0 ": 53 23 32 4.208 1 0 54 32 33 4.670 1 0 55 33 34 4.670 1 0 Ir .• 56 34 12 4.061 1 0 57 35 36 4.813 1 0 58 36 12 5.272 1 0 59 23 37 4.895 2 0 60 37 35 4.806 2 0 .! 61 32 37 2.279 2 0 62 37 33 5.082 2 0 63 33 35 4.519 2 0 64 33 36 4.656 2 0 65 36 34 2.447 2 0 66 36 20 _ 5.353 2 0 r,= Basic Load Cases Number Name 7:i 1 DL 2 LL IF-.3 3 BSL 4 VSL 5 DSL 6 W1 7 W2 I 8 EQ 9 W3 10 W4 1 I . Pent Time/Date:09/07/2014 11:20 STAAD.Pro V8i 20.07.05.15 Pont Run 3 of 13 I " Job No Sheet No Rev f 141010 rirW 1 Software licensed to Part ' Job Title Growing Up Greens Ref By Datc26-Jun-14 Chd MN Client ATLANTIC BEACH,FL He Structurel.std 'Date/Time 04-Mar-2007 13:58 Combination Load Cases Comb. Combination L/C Name Primary Primary L/C Name Factor Nei 11 D 1 DL 1.00 12 D+L 1 DL 1.00 2 LL 1.00 13 D+BSL+DSL 1 DL 100 3 BSL 1.00 5 DSL 1.00 14 D+USL 1 DL 1.00 L - 4 VSL 1.00 15 D+0.45W1+0.75L 1 DL 100 6 W1 0.45 2 LL 0.75 16 D+0.45W2+0.75L 1 DL 1.00 7 W2 0.45 2 LL 0.75 r.* 17 D+0.45W3+0.75L 1 DL 100 9 W3 0.45 2 LL 0.75 18 D+0.45W4+0.75L 1 Dl 1.00 "'/ 10 W4 0.45 2 LL 0.75 19 D+0.45W1+0.75BSL+0.75DSL 1 DL 1.00 6 W1 0.45 0i 3 BSL 0.75 5 DSL 0.75 20 D+0.45W2+0.75BSL+0.75DSL 1 DL 1.00 1/i 7 W2 0.45 3 BSL 0.75 5 DSL 0.75 li 21 D+0.45W3+0.75BSL+0.75DSL 1 DL 1.00 9 W3 0.45 3 BSL 0.75 5 DSL 0.75 Mt 22 D+0.45W4+0.75BSL+0.75DSL 1 DL 1.00 10 W4 0.45 . 3 BSL 0.75 5 DSL 0.75 r' 23 D+0.45W1+0.75USL 1 DL 1.00 6 W1 0.45 4 VSL 0.75 Ili 24 D+0.45W2+0.75USL 1 DL 1.00 7 W2 0.45 4 VSL 0.75 25 D+0.45W3+0.75USL 1 DL 1.00 IW 9 W3 0.45 . 4 VSL 0.75 Print Time/Date:09/07/2014 11:20 STAAD.Pro V8i 20.07.05.15 Print Run 4 of 13 I '-� Job No Sheet No Rev - 141010 Part Software licensed to Job Title Growing Up Greens Ref By 11a1(26-Jun-14 Chd Client ATLANTIC BEACH,FL File Structural.std IDate/Time 04-Mar-2007 13:58 Combination Load Cases Cont... Comb. Combination L/C Name Primary Primary L/C Name Factor lir 26 D+0.45W4+0.75USL 1 DL 1.00 10 W4 0.45 Iri 4 VSL 0.75 27 D+0.525E+0.75L 1 DL 1.00 8 EQ 0.52 2 LL 0.75 1 1. 28 D+.0.525E+0.75BSL+0.75DSL 1 DL 1.00 _ 8 EQ 0.52 1 3 BSL 0.75 ii 5 DSL 0.75 a 29 D+0.525E+0.75USL 1 DL 1.00 8 EQ 0.52 4 VSL 0.75 it 30 0.6D+0.6W 1 1 DL 0.60 6 W1 0.60 31 0.6D+0.6W2 1 DL 0.60 i 7 W2 0.60 32 0.6D+0.6W3 1 DL 0.60 i 9 W3 0.60 33 0.6D+0.6W4 1 DL 0.60 10 W4 0.60 s 34 0.6D+0.7E 1 DL 0.60 8 EQ 0.70 i 35 COMBINATION LOAD CASE 35 1 DL 0.90 6 W1 0.60 36 COMBINATION LOAD CASE 36 1 DL 0.90 7 W2 0.60 37 COMBINATION LOAD CASE 37 1 DL 0.90 9 W3 0.60 38 COMBINATION LOAD CASE 38 1 DL 0.90 • i , 10 W4 0.60 it I I Print Time/Date:09/07/2014 11:20 STAAD.Pro V8i 20.07.05.15 Print Run 5 of 13 I. _ Job No Sheet No Rev • A . 141010 Software licensed to Pail Job Tine Growing Up Greens Ref By Date26-Jun-14 Chd Client ATLANTIC BEACH,FL File Structurel.std Dale)Time 04-Mar-2007 13:58 3:. Node Loads : 1 DL Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kipft) (kip-ft) (kip"ft) 1 - -0.063 - - - - -0.195 - - -_ 3 3 - -0.404 - - 4 - -0.426 - - - - 5 - -0.448 - - - - 6 - -0.419 - - - - 7 0.194 : 8 - -0.121 - - - - - 12 - -0.126 - - - - - -0.390 - - - - a 13 - -0.426 - 14 - -0.448 - - - _ 15 - -0.419 - - - - 16 - -0.194 - - 17 - -0.121 - _ - - 21 - -0.063 - - - - - -0.195 - - - - 23 - -0.404 - - 24 - -0.426 - - - - 25 - -0.448 - - - - 26 - -0.419 - 27 - -0.194 - - - - 28 - -0.121 - - - - 32 - -0.426 - - - - 33 - -0.448 - - 34 - -0.419 - - - _ - 35 - -0.194 - - - - 36 - -0.121 - - - - Node Loads : 2 LL Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kipft) (kip:ft) (kip•ft) 1 - -0.261 - - 3 - -0.542 - - - - 4 - -0.572 - - - - 5 - -0.601 - - 6 - -0.562 -- 12 - -0.522 - - 13 - -0.572 - - - - 14 - -0.601 - - 15 - -0.562 - - - - 21 - -0.261 - - - - 23 - -0.542 - - - Print Time/Date:09/07/2014 11:20 STAAO.Pro V8i 20.07.05.15 Print Run 6 of 13 I ".; Job No Sheet No Rev # pi-j. 141010 Part Software licensed to Job Title Growing Up Greens Ref ir By Datr26 Jun-14 Chd Client ATLANTIC BEACH,FL File Structurel.std 1Datehime 04-Mar-2007 13:58 IFNode Loads : 2 LL Cont... Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip ft) (kip ft) (kip ft) - 24 - -0.572 - - - - 25 -0.601 26 - -0.562 - - - - 32 -0.572 - - - - 33 - -0.601 - - - - 34 -0.562 - - - - If .Node Loads : 3 BSL Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip-ft) (kipft) 1 - -0.000 - - - - 3 - -0.000 - - - - 12 - -0.000 - - - - 21 - -0.000 - - - - ? 23 - -0.000 - - - - 1 Node Loads : 4 VSL Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip"ft) (kip ft) (kip ft) 3 _ - -0.000 - - - - I i 12 -0.000 - - 23 - _ -0.000 - - - - IF Node Loads : 5 DSL Node FX FY FZ MX MY MZ • (kip) (kip) (kip) (kip fl) (kipft) (kipit) 25 - -0.000 - - - - i 1 1 Print Time/Date 09/07/2014 11:20 STAAD.Pro V8i 20.07.05.15 Print Run 7 of 13 i I - Job No Sheet No Rev rillAI 141010 Software licensed to Part Job Title Growing Up Greens Ref By Datc26-Jun-14 Chd Client ATLANTIC BEACH,FL File Structurel.std IDatelTime 04-Mar-2007 13:58 Node Loads : 6 W1 I Node FX FY FZ MX MY MZ 3 (kip) (kip) (kip) (kip-ft) (kip-ft) (kipit) 1 0.025 -0.050 - - - _ 3 0.026 -0.052 - - - - ii: 0.086 0.172 - - 4 0.055 -0.110 - - - _ 5 0.058 -0.115 - - - - 6 0.054 -0.108 - - - _ 12 -0.083 0.166 - - - - 0.083 0.166 - - - - 13 0.181 0.362 - - _ - 14 0.190 0.381 - - - - 15 0.178 0.356 - - 21 0.083 0.166 - - - - 23 -0.086 0.172 - - - - 0.086 0.172 - - - _ 24 0.181 0.362 - - - - 25 0.190 0.381 - - - _ 26 0.178 0.356 - - - _ 32 -0.181 0.362 - - _ - 33 -0.190 0.381 - - - - 34 -0.178 0.356 2 Beam Loads : 6 W1 2 :: Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 15 UNI Ibf/fl GX 249.600 - - _ 16 UNI Ibf/ft GX 249.600 - - - - 49 UNI Ibf/ft GX 72.000 - 50 UNI Ibf/ft GX 72.000 - - - - I 1• I I • Print Time/Date:09/07/2014 11:20 STAAD.Pro V8i 20.07.05.15 Print Run 8 of 13 I Ci "4 - Job No Sheet No Rev FA. 141010 Part Software licensed to R Job Title Growing Up Greens Ref Li By Date26-Jun-14 Chd Client ATLANTIC BEACH,FL File Structurel.std 'Date/Time 04-Mar-2007 13:58 Node Loads : 7 W2 rill Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kipft) (kip-ft) (kip ft) 1 -0.087 0.174 - - s.a 3 -0.090 0.181 - - - - 0.202 0.404 - - - - L:i 4 -0.191 0.381 - - - - 5 -0.200 0.401 - - - - 6 -0.187 0.375 If 12 -0.195 0.390 - - - - 0.195 0.390 _ - - - - 13 0.426 0.853 - - - 14 0.448 0.897 - - - i 15 0.419 0.838 - - - - 21 0.195 0.390 - - - - 23 0.202 0.404 - - - - 0.202 0.404 - - - - 24 0.426 0.853 - - 25 0.448 0.897 - - - - 26 0.419 0.838 - - - - f 32 -0.426 0.853 - - - - 33 -0.448 0.897 - - - - 34 -0.419 0.383 - - - - i Beam Loads : 7 W2 if Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 15 UNI Ibf/ft GX - 127.200 - - - - 16 UNI Ibf/ft GX 127.200 - - - it 49 UNI Ibf/fl GX 195.600 - - 50 UNI Ibf/ft GX 195.600 - - - x 6 if IPPrint Time/Date:09/07/2014 11:20 STAAD.Pro V8i 20.07.05.15 Print Run 9 of 13 I I Job No Sheet No Rev 141010 'iNk.. Software licensed to Part Job Title Growing Up Greens Ref By DatE26-Jun-14 Chd Client ATLANTIC BEACH,FL File St Date(Time ructurel.std 04-Mar-2007 13:58 Node Loads : 8 EQ Node FX FY FZ MX MY MZ 3 (kip) (kip) (kip) (kip-ft) (kip-ft) (kip ft) 1 0.008 - - - - _ 3 0.019 - - - 4 0.018 - - - - - 5 0.019 - - - _ 6 0.018 - - - 12 0.016 - - - - - 13 0.018 - - - - - 3,:: 14 0.019 - - _ - - - 15 0.018 - - - 21 0.008 - - - - - 23 0.019 - - 24 0.018 - - - - 25 0.019 - - - _ 26 0.018 - 32 0.018 - - - - _ 33 0.019 - - 34 0.018 - - - - - Node Loads : 9 W3 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kipit) (kip-ft) 1 -0.159 0.318 - - - - 3 -0.165 0.330 - 0.165 0.330 - - - - 4 -0.348 0.696 - - 5 -0.366 0.732 - - 6 0.342 0.684 12 -0.159 0.318 - _ - 0.159 0.318 - - - - 13 0.348 0.696 - 14 0.366 0.732 - 15 0.342 0.684 - - 21 0.159 0.318 - - - - 23 -0.165 0.330 - - - - 0.165 0.330 - - _ - 24 0.348 0.696 - - 25 0.366 0.732 - -26 0.342 0.684 32 -0.348 0.696 - - II 33 -0.366 0.732 - - - - III 34 0.342 _ 0.684 - - - - Print Time/Date:09(07/2014 11:20 STAAD.Pro V8i 20.07.05.15 I Print Run 10 of 13 I i -- Job No Sheet No Rev _ :141010 Part Software licensed to Job Title Growing Up Greens Ref f By Dal€26-Jun-14 Chd Client ATLANTIC BEACH,FL F11e Structurel.sld IDaterrime 04-Mar-2007 13:58 Beam Loads : 9 W3 ) Da Type Direction Fa Da Fb Db Ecc. (ft) (ft) 15 UNI Ibflft GX -92.400 16 UNI Ibf/ft GX -92.400 - - - - 49 UNI Ibf/ft GX 92.400 - - - - C 50 UNI Ibf/ft GX 92.400 - - - _ - Node Loads : 10 W4 Node FX FY - FZ MX MY MZ (kip) (kip) (kip) (kip"ft) (kipft) (kip ft) 1 -0.270 0.540 - - - - 3 -0.280 Q.560 - - - - 0.280 0.560 - - - - 4 -0.591 1.181 - - - - 5 -0.621 1.243 - - - - 6 -0.581 1.162 - - - - 12 -0.270 0.540 - - - - 0.270 0.540 - - - - 13 0.591 1.181 - - - - 14 0.621 1.243 - - - - 15 0.581 1.162 21 0.270 0.540 - - - -- 23 -0.280 0.560 - - - - 0.280 0.560 - - - - fl 24 0.591 1.181 - - - - 25 0.621 1.243 - - - - 26 0.581 1.162 - - - - - 32 -0.591 1.181 - - - - 33 -0.621 1.243 - - - - 34 -0.581 1.162 - - - - • 4 1 Beam Loads : 10 W4 Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) fli.-'1.:i 15 UNI Ibf/ft GX -216.000 - - 16 UNI Ibflft GX -216.000 - - - - 49 UNI Ibf/ft GX 216.000 - - - - 50 UNI Ibf/ft _ GX 216.000 - - - - i Print Time/Date:09/07/2014 1120 STAAD.Pro V8i 20.07.05.15 Print Run 11 of 13 1 3 „...._. -.I - Job No Sheet No Rev af:: VA 141010 Software licensed to Part Job Titl§ Growing Up Greens Ref By Datc26-Jun-14 Chd Client ATLANTIC BEACH,FL File Structurel.std 'Date/Tune 04-Mar-2007 13:58 Node Displacement Summary Node L/C X Y Z Resultant rX rY rZ (in) (in) (in) (in) (rad) (rad) (rad) 2 Max X 21 35:COMBINAT 4.324 -0.006 0.000 4.324 0.000 0.000 -0.002 Min X 11 12:0+L -0.097 -0.021 0.000 0.099 0.000 0.000 -0.001 Max Y 13 33:0.6D+0.6W4 0.020 0.091 0.000 0.093 0.000 0.000 0.000 Min Y 13 12:D+L -0.071 -0.279 0.000 0.288 0.000 0.000 -0.000 Max Z 1 11:D -0.040 -0.011 0.000 0.041 0.000 0.000 -0.001 Min Z 1 11:D -0.040 -0.011 0.000 0.041 0.000 0.000 -0.001 Max rX 1 11:D -0.040 -0.011 0.000 0.041 0.000 0.000 -0.001 • Min rX 1 11:D - -0.040 -0.011 0.000 0.041 0.000 0.000 -0.001 Max rY 1 11:D -0.040 -0.011 0.000 0.041 0.000 0.000 -0.001 Min rY 1 11:D -0.040 -0.011 0.000 0.041 0.000 0.000 -0.001 Max rZ 31 38:COMBINAT 0.013 0.005 0.000 0.014 0.000 0.000 0.003 Min rZ 31 30:0.60+0.6W1 4.282 -0.003 0.000 4.282 0.000 0.000 -0.005 Max Rst 21 35:COMBINAT 4.324 -0.006 _ 0.000 4.324 0.000 _ 0.000 -0.002 Beam Force Detail Summary Sign convention as diagrams:-positive above line, negative below line except Fx where positive is compression.Distance d is given from beam end A. Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (kipit) (kipit) (kip ft) Max Fx 33 12:0+L 0.000 8.783 -0.000 0.000 0.000 0.000 -0.000 Min Fx 58 12:D+L 0.000 -8.947 -0.041 0.000 0.000 0.000 -0.215 Max Fy 49 33:0.60+0.6W4 0.927 -1.070 2.266 0.000 0.000 0.000 -2.045 Min Fy 32 31:0.60+0.6W2 0.000 -0.848 -5.687 0.000 0.000 0.000 0.000 Max Fz 1 11:D . 0.000 -1.927 -0.000 0.000 0.000 0.000 -0.011 Min Fz 1 11:D 0.000 -1.927 -0.000 0.000 0.000 0.000 -0.011 Max Mx 1 11:D 0.000 -1.927 -0.000 0.000 0.000 0.000 -0.011 Min Mx 1 11:0 0.000 -1.927 -0.000 0.000 0.000 0.000 -0.011 Max My 1 11:D 0.000 -1.927 -0.000 0.000 0.000 0.000 -0.011 Min My 1 11:D 0.000 -1.927 -0.000 0.000 0.000 0.000 -0.011 Max Mz 32 31:0.60+0.6W2 0.927 -0.848 -5.687 0.000 0.000 0.000 5.272 Min Mz 16 30:0.60+0.6W1 15.073 0.974 1.880 0.000 0.000 0.000 -8.642 I I I • Print Time/Date:09/07/2014 11:20 STAAD.Pro V8i 20.07.05.15 Pnnt Run 12 of 13 I Job No Sheet No Rev - 141010 7 Part IA Software licensed to Job Title Growing Up Greens Ref By DatE26-Jun-14 Chd Client ATLANTIC BEACH,FL File Structurel.std 'Date/Time 04-Mar-2007 13:58 Reaction Summary Horizontal Vertical Horizontal Moment Node L/C FX FY FZ MX MY MZ (kip) (kip) (kip) (kip ft) (kip ft) (kip ft) Max FX 10 38:COMBINAT 1.022 -1.021 0.000 0.000 0.000 -2.688 IF Min FX 10 30:0.6D+0.6W1 -1.880 0.974 0.000 0.000 0.000 8.642 Max FY 19 12:D+L 0.000 8.783 0.000 0.000 0.000 -0.000 Min FY 19 33:0.6D+0.6W4 0.000 -3.017 0.000 0.000 0.000 -0.000 Max FZ 10 11:0 0.017 2.041 0.000 0.000 0.000 -0.105 ii. Min FZ 10 11:D 0.017 2.041 0.000 0.000 0.000 -0.105 Max MX 10 11:D _ 0.017 2.041 0.000 0.000 0.000 -0.105 Min MX 10 11:D 0.017 2.041 0.000 0.000 0.000 -0.105 Max MY 10 11:D 0.017 2.041 0.000 0.000 0.000 -0.105 Min MY 10 11:D 0.017 2.041 0.000 0.000 0.000 -0.105 Max MZ 10 30:0.6D+0.6W1 -1.880 0.974 0.000 0.000 0.000 8.642 Min MZ 10 38:COMBINAT 1.022 -1.021 0.000 0.000 0.000 -2.688 I t if t I .. i i i Print Time/Date:09/07/2014 11:20 STAAD.Pro V8i 20.07.05.15 Print Run 13 of 13 i I - Job No Sheet No Rev 141010 TOP !".::::111' Software licensed to Part Job Title Growing Up Greens Ref By Date26-Jun-14 Chd Client ATLANTIC BEACH,FL File St Date/rime ructurel.sld 04-Mar-200713:58 Beam Force Detail Summary 3., Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A. Axial Shear Torsion Bending Beam UC d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (ki •ft) (kip-ft) (kip t) ill• Max Fx 5 12:D+L 0.000 8.033 -0.069 0.000 0.000 0.000 -0.281 Min Fx 19 33:0.6D+0.6W4 0.000 -3.037 -0.026 0.000 0.000 0.000 0.000 Max Fy 21 12:D+L 0.000 6.889 0.075 0.000 0.000 0.000 0.065 Min Fy 22 12:D+L 0.000 7.531 -0.071 0.000 0.000 0.000 -0.287 Max Fz 2 11:D _ 0.000 3.118 0.025 0.000 0.000 0.000 0.000 Min Fz 2 11:D 0.000 3.118 0.025 0.000 0.000 0.000 0.000 Max Mx 2 11:D 0.000 3.118 0.025 0.000 0.000 0.000 0.000 Min Mx 2 11:D 0.000 3.118 0.025 0.000 0.000 0.000 0.000 Max My 2 11:D 0.000 3.118 0.025 0.000 0.000 0.000 0.000 Min My 2 11:D 0.000 3.118 0.025 0.000 0.000 0.000 0.000 3 Max Mz 19 33:0.6D+0.6W4 4.208 -3.037 -0.026 0.000 0.000 0.000 0.110 Min Mz 21 12:D+L 4.670 6.889 0.075 0.000 0.000 0.000 -0.287 I a I 1 I 1 I I Print Time/Date:09ro7/2014 to:ai STAAD.Pro V8i 20.07.05.15 Print Run i un t of 1 I I "+r Job No Sheet No Rev ?:: - 141010 BOTTOM Part Software licensed to Job rue Growing Up Greens Ref By Date26-Jun-14 Chd Ghent ATLANTIC BEACH,FL File Structurel.std 1Daterrime 04-Mar-2007 13:58 iir Beam Force Detail Summary Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A. i Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz ft, (ft) (kip) (kip) (kip) (kip•ft) (kip ft) (kip ft) Max Fx 7 33:0.60+0.6W4 0.000 3.708 0.012 0.000 0.000 0.000 0.062 Min Fx 58 12:D+L 0.000 -8.947 -0.041 0.000 0.000 0.000 -0.215 Max Fy 6 12:D+L 0.000 -6.257 0.041 0.000 0.000 0.000 -0.022 Min Fy 7 12:0+L 0.000 -7.481 -0.042 0.000 0.000 0.000 -0.219 Max Fz 1 11:D 0.000 -1.927 -0.000 0.000 0.000 0.000 -0.011 Min Fz 1 11:D - 0.000 -1.927 -0.000 0.000 0.000 0.000 -0.011 Max Mx 1 11:D 0.000 -1.927 -0.000 0.000. 0.000 0.000 -0.011 Min Mx 1 11:D 0.000 -1.927 -0.000 0.000 0.000 0.000 -0.011 Max My 1 11:D 0.000 -1.927 -0.000 0.000 0.000 0.000 -0.011 Min My 1 11:D 0.000 -1.927 -0.000 0.000 0.000 0.000 -0.011 i-a Max Mz 57 33:0.6D+0.6W4 4.813 0.586 -0.012 0.000 0.000 0.000 0.066 Min Mz 6 12:D+L 4.813 -6.257 0.041 0.000 0.000 0.000 -0.219 I I if I E I IlPnnl Time/Date:09/07/2014 10.41 STAAD.Pro V8i 20.07.05.15 Print Run 1 of 1 I Frizo--4 Job No Sheet No Rev 141010 COLUMN Software licensed to Part Job Title Growing Up Greens Ref By Date26-Jun-14 Chd Client ATLANTIC BEACH,FL File Structurel.std Date/Time 04-Mar-2007 13:58 Beam Force Detail Summary Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A. Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (kipit) (kiplt) (kipft) Max Fx 33 12:D+L 0.000 8.783 -0.000 0.000 0.000 0.000 -0.000 Ili Min Fx 33 33:0.60+0.6W4 0.000 -3.017 -0.000 0.000 0.000 0.000 -0.000 Max Fy 49 33:0.6D+0.6W4 0.927 -1.070 2.266 0.000 0.000 0.000 -2.045 Min Fy 32 31:0.6D+0.6W2 0.000 -0.848 -5.687 0.000 0.000 0.000 0.000 Max Fz 15 11:D _ 0.000 2.011 0.156 0.000 0.000 0.000 0.000 Min Fz 15 11:D 0.000 2.011 0.156 0.000 0.000 0.000 0.000 Max Mx 15 11:D 0.000 2.011 0.156 0.000 0.000 0.000 0.000 3 Min Mx 15 11:D 0.000 2.011 0.156 0.000 0.000 0.000 0.000 Max My 15 11:D 0.000 2.011 0.156 0.000 0.000 0.000 0.000 Min My 15 11:D 0.000 2.011 0.156 0.000 0.000 0.000 0.000 Max Mz 32 31:0.6D+0.6W2 0.927 -0.848 -5.687 0.000 0.000 0.000 5.272 Min Mz 16 30:0.6D+0.6W1 15.073 0.974 1.880 0.000 0.000 0.000 -8.642 I 1 I 3 I 1 3 3 • ii- ' Print Time/Date.09/07/2014 10:43 STAAD.Pro V8i 20.07.05.15 Print Run 1 of 1 II I 1 ..'+7 Job No Sheet N7 Re': 1 141010 KNEE-BRACE Part Software licensed to -, Job Title Growing Up Greens Ref By Da1E26-Jun-14 Chd Client ATLANTIC BEACH,FL F118 Structurel.std IDateiT1me 04-Mar-2007 13:58 : t , ' Beam Force Detail Summary il Sign convention as diagrams:-positive above line.negative below line except Fx where positive is compression. Distance d is given from beam end A. Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (kip ft) (kip ft) (kip ft) Max Fx 51 30:0.6D+0.6W1 0.000 5.146 0.000 0.000 0.000 0.000 0.000 Min Fx 17 31:0.60+0.6W2 0.000 -4.364 0.000 0.000 0.000 0.000 0.000 Max Fy 17 11:D 0.000 0.176 0.000 0.000 0.000 0.000 0.000 Min Fy 17 11:D 0.000 0.176 0.000 0.000 0.000 0.000 0.000 %3 Max Fz 17 11:D 0.000 0.176 0.000 0.000 0.000 0.000 0.000 Min Fz 17 11:D - 0.000 0.176 0.000 0.000 0.000 0.000 0.000 Max Mx 17 11:D 0.000 0.176 0.000 0.000 0.000 0.000 0.000 I Min Mx 17 11:D 0.000 0.176 0.000 0.000 0.000 0.000 0.000 Max My 17 11:D 0.000 0.176 0.000 0.000 0.000 0.000 0.000 Min My ' 17 11:D 0.000 0.176 0.000 0.000 0.000 0.000 0.000 7. Max Mz 17 11:D 0.000 0.176 0.000 0.000 0.000 0.000 0.000 Min Mz 17 11:D 0.000 0.176 0.000 0.000 0.000 0.000 0.000 y I F I ,: if :, , it ,, Print Time/Date:09/0712014 10 42 STAAD.Pro V8i 20.07.05.15 Print Run 1 of 1 I I A Job No Sheet No Rev 141010 DIAGONAL Software licensed to Part Job Title Growing Up Greens Ref �r By Date26-Jun-14 Chd Client ATLANTIC BEACH,FL File St !Date/rime ructurel.std 04-Mar-2007 13:58 Beam Force Detail Summary Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A. Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz mi (ft) (kip) (kip) (kip) (kip ft) (kip-ft) (kip-ft) Max Fx 25 33:0.6D+0.6W4 0.000 1.454 -0.003 0.000 0.000 0.000 0.000 Min Fx 8 12:D+L 0.000 -3.040 0.007 0.000 0.000 0.000 -0.000 Max Fy 8 12:D+L 0.000 -3.040 0.007 0.000 0.000 0.000 -0.000 Min Fy 9 12:D+L 0.000 -2.172 -0.007 0.000 0.000 0.000 -0.035 Max Fz 8 11:D _ 0.000 -1.472 0.003 0.000 0.000 0.000 0.000 Min Fz 8 11:D 0.000 -1.472 0.003 0.000 0.000 0.000 -0.000 Max Mx 8 11:D 0.000 -1.472 0.003 0.000 0.000 0.000 -0.000 Min Mx 8 11:D 0.000 -1.472 0.003 0.000 0.000 0.000 -0.000 Max My 8 11:0 0.000 -1.472 0.003 0.000 0.000 0.000 -0.000 Min My 8 11:D 0.000 -1.472 0.003 0.000 0.000 0.000 -0.000_ Max Mz 25 33:0.6D+0.6W4 4.895 1.454 -0.003 0.000 0.000 0.000 0.016 M 3 , in Mz 8 12:D+L 4.895 -3.040 0.007 - 0.000 0.000 0.000 -0.035 I I I 3 1 is • 1 Print Time/Date:09/07/2014 10:42 STAAD.Pro V8i 20.07.05.15 Print Run 1 of 1 I I Job No Sheet No Rev 1 141010 WEB z Software licensed to Part Job rue Growing Up Greens Ref By Date26-Jun-14 Chd Client ATLANTIC BEACH,FL File Structurel.std IDate/rime 04-Mar-2007 13:58 Beam Force Detail Summary Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A. Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz f (ft) (kip) (kip) (kip) (kip-ft) (kipit) (kip ft) Max Fx 12 15:D+0.45W1+ 0.000 1.836 0.000 0.000 0.000 0.000 0.000 Min Fx 13 16:D+0.45W2+ 0.000 -1.142 0.000 0.000 0.000 0.000 0.000 Max Fy 10 11:D 0.000 0.327 0.000 0.000 0.000 0.000 0.000 If Min Fy 10 11:D 0.000 0.327 0.000 0.000 0.000 0.000 0.000 Max Fz 10 11:D 0.000 0.327 0.000 0.000 0.000 0.000 0.000 Min Fz 10 11:D - 0.000 0.327 0.000 0.000 0.000 0.000 0.000 !-? Max Mx 10 11:D 0.000 0.327 0.000 0.000 0.000 0.000 0.000 Min Mx 10 11:D 0.000 0.327 0.000 0.000 0.000 0.000 0.000 Max My 10 11:D 0.000 0.327 0.000 0.000 0.000 0.000 0.000 Min My 10 11:D 0.000 0.327 0.000 0.000 0.000 0.000 0.000 tr Max Mz 10 11:D 0.000 0.327 0.000 0.000 0.000 0.000 0.000 L; Min Mz 10 11:D 0.000 0.327 0.000 0.000 0.000 0.000 0.000 Li,:. , I • I I 1 I iPrint Time/Date:09/07/2014 10:42 STAAD.Pro V8i 20.07.05.15 Print Run 1 of 1 I - 1 II Truss Top Chord I Input +a Member Section 4x2x8ga YI ii A=Tube Width ', /. B= Tube Length 4 in i R= Corner Inner Radius 0.1875 in i ■ t=Thickness 0.165 in 21. , -•-.-_4.-.---• •X b B KLx= Buckling around x-x 4.06 ft i KLY Buckling around x-x 4.06 ft 3 E = Modulus of Elasticity 29500 ksi - J F r= Yield Stress 50 ksi Vi G = Shear Modulus 11300 ksi 0 A I Calculated Parameter II Applied Forces ' 1- Properties of 90°corner M 8 kip.ft r= R + t12, Centerline of Dimension 0.270 in P 0.974 kips 3 u= n. r/2, Arc Length 0.424 in c=0.637.r Distance of c.g. from center 0.172 _ in 2-Flat widths of flanges and webs Flat width of Dim. a=A-(2.r+ t) 1.295 in Flat width of Dim. b= B -(2.r+ t) 3.295 in I Calculation of Ix I i Element L, Length (in) Y, Distance to the center(in) L xY2 Ix' Flanges 2.a 2.59 B/2 -t/2 1.9175 9.5229 0.0000 Web 2.b 6.59 0 0 0.0000 5.9623 Corners 4.0 1.697 b/2 + c 1.819 5.6166 0.0000 Sum 10.8766 3.7370 15.1395 5.9623 Calculation of l„ I Element L, Length (in) X, Distance to the center(in) L x X2 I Y' Flanges 2.a 2.59 0 0 0.0000 0.3620 Web 2.b 6.59 A/2 -t/2 0.9175 5.5475 0.0000 Corners 4.0 1.697 a/2 + c 0.819 1.1394 0.0000 Sum 10.8766 1.7370 _ 6.6869 0.3620 Section Properties I A L x t 1.7946 in2 Ix t x( L x Y2 +Ix') 3.4818 in4 a ly tx(LxX2 +lY) 1.1631 in4 Sx lx/(B/2) 1.7409 in3 Sy l /(A/2) 1.1631 in rx (lx/A)°5 1.3929 in ry (I,./A)°5 0.8050 _ in I • I 1 I I iiiI Nominal Buckling Stress I KLx/rx 34.9779 IKLy/r, 60.5195 A KUr 60.5195 Fe . n2. E/(KUr)2 79.4935 ksi IC (Fy/Fe)°5 0.7931 Fn 38.4271 ksi I Effective Area I effective width of compression flange - w/t=alt 7.8485 A r 1.0521(k)°5 X(w/t)X (F„/E)°5 0.1490 s r (10.22/))/ A. -3.1983 - ae 1.2950 _ in effective width of web element i wit. bit 19.9697 1 1.0521(k)°5 x(w/t)x(F„/E)°5 0.3791 iv! r (1-0.22/A.)/X 1.1070 be 3.2950 in x I Allowable Axial Load I Ae Ae =A -2 x t x [(a-ae)+ (b-be)] 1.79463438 in2 Pn Pn=An x F„ 68.9625406 kips S2c 1.8 Pa = P„/S2c 38.3125 kips i I Check Compression Stresses Loads from Wind? Cbl I Cb1=(P/Pa) 0.0254 NO Allowable Stress Unity 1 1 0.0254 Section is OK C•' I Computing of Mnx I By using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: i . Element L, Length (in) y, Distance to top fiber(in) L.y L.y2 C. Flanges ae 1.295 112 0.0825 0.1068 0.0088 Web 2.b 6.59 B/2 2 13.1800 26.3600 i , C. Corners 2.0 0.848286 c+1/2 0.25449 0.2159 0.0549 T. Flanges ae 3.295 B-t/2 3.9175 12.9082 50.5677 T.Corners 2.0 0.848286 B-c 3.828 3.2472 12.4305 Sum 12.8766 10.0825 29.6581 - 89.4220 yc°= L.y/ L 2.3033 Z=R+t 0.3525 in • , I il i I The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation I Check the effectiveness of the Web fi (ycg-Z)F>/ycg 42.3478 ksi III f2 -(B-ycg-Z)Fy/ycg -29.1812 ksi Y f2/f+ -0.6891 k 4+2(1-03+2(1-W) 17.0161 h/ belt 19.9697 I 1.0521(k)°5 x(h/t)x(f1/E)05 0.1930 r (1-0.22/l)/A -0.7263 be 3.2950 in b1 be/(3-W) 0.8932 in b2 1.6475 in _ b1+b2 2.5407 in 2 1 Web I 2(1112)(b)3 5.9623 in4 S(Ly2) 89.4220 in4 (-)(SL)(Ycg)2 68.3105 in4 l'x 27.0738 in4 Ix=1'xt 4.4672 in4 Sex=lx/Ycg _ 1.9395 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 1.3090 in4 Sf fullSx 1.7409 in4 L„ 0.36Cbn.(E I.G.j)05/(Fy. Sr) 42.2211 ft IIIFey Cbn.(E I.G.j)0.5/(L. Sf) 1444.3467 ksi I Allowable Bending Moment I Mnx 8.0813 kip.ft nb 1.67 III - Ma = Mnx Mn 4.83907678 kip.ft Check Stresses Cmx 0.6-0.4*M,/M2 0.6000 Loads from Wind? Cbl (P/Pa)+(Cmx Mx/Ma ) 1.0173 NO Cb2 (P/Pa)+ (Mx/Ma) 1.6786 Allowable Stress Unity I 1 1 Cb If((P/Pa)<= 0.15,Cb2,Cb,) 1.6786 Section is NG and try another section I I I • 1 '' r d 17 II Truss Bottom Chord (Comp) I iftp I Input Data I YI R Member Section 4x2x14ga A=Tube Width 2 in 4" j 1 B= Tube Length 4 in j S R= Corner Inner Radius 0.0938 in j S t=Thickness 0.083 in -x- ' ----•--.-4.------ % bb B ■ Lrli KLx= Buckling around x-x 5.27 ft i I KLy= Buckling around x-x 10.5 ft I Lor: E= Modulus of Elasticity 29500 ksi •- J Fy=Yield Stress 50 ksi Y G= Shear Modulus 11300 ksi o A F Calculated Parameter Applied Forces 1- Properties of 90°corner M _ 0.062 kip.ft _r r= R + t/2, Centerline of Dimension 0.135 in P _ 3.708 kips ari u = ir. r/2, Arc Length 0.213 in c=0.637.r Distance of c.g. from center 0.086 in 2-Flat widths of flanges and webs _ E-7, Flat width of Dim. a=A-(2.r+ t) 1.6464 in Flat width of Dim. b= B-(2.r+ t) 3.6464 in i' I Calculation of Ix I ° Element L, Length (in) Y, Distance to the center(in) L xY2 Ix Flanges , 2.a 3.2928 B/2 -1/2 1.9585 12.6303 0.0000 Web 2.b 7.2928 0 0 0.0000 8.0806 Corners 4.0 0.850 b/2 + c _ 1.909 3.0995 0.0000 Sum 11.4358 3.8679 15.7298 8.0806 -r. ( Calculation of ly I L Element L, Length (in) X, Distance to the center(in) L x X2 lY Flanges 2.a _ 3.2928 0 0 0.0000 0.7438 fit Web 2.b 7.2928 A/2 -1/2 0.9585 6.7001 0.0000 Corners 4.0 _ 0.850 a/2 + c 0.909 0.7031 0.0000 Sum 11.4358 1.8679 7.4031 0.7438 • I Section Properties -A Lxt 0.9492 in2 Ix t X( L x Y2 +Ix') 1.9763 in4 ly t x(L x X2 +ly') 0.6762 in4 Sx Ix/(B/2) 0.9881 in' S„ ly/(A/2) 0.6762 in' rx (I4/A)05 1.4429 in ry (l /A)°.5 0.8440 in col • 0 Liri I _ 111L Ir Nominal Buckling Stress I KLx/rx 43.8270 KLy/ry 149.2816 KL/r 149.2816 Fe 1[2. E/(KL/r)2 13.0650 ksi IC _ (Fy/Fe)05 1.9563 Fn 11.4580 _ ksi Effective Area effective width of compression flange w/t=alt 19.8361 X 1.052/(k)°5 X(w/t)x(F„/E)°5 0.2056 - -0.3398 ae 1.6464 _ in effective width of web element I. w/t= b/t 43.9325 I 1.0521(k)0'5 x(w/t)X(F„/E)°5 0.4554 r (1-0.22/X)/A. 1.1351 be 3.6464 in Allowable Axial Load AQ Ae =A -2 x t x [(a-ae)+ (b-be)] 0.949169 in2 Pn Pn=Ae x Fn 10.8755811 kips nc - 1.8 I. Pa = P0/mac 6.0420 kips Check Compression Stresses I I Loads from Wind? Cbt I Cb1=(P/Pa) 0.6137 NO Allowable Stress Unity I 1 0.6137 Section is OK Computing of Mnx I I By using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: Element L, Length (in) y, Distance to top fiber(in) L.y L.y2 C. Flanges ae 1.6464 t/2 0.0415 0.0683 0.0028 Web 2.b 7.2928 6/2 2 14.5856 29.1712 C. Corners 2.0 0.42508554 c+t/2 0.127686 0.0543 0.0069 ' T. Flanges ae 3.6464 B-t/2 3.9585 14.4343 57.1381 T.Corners 2.0 0.42508554 B-c 3.914 1.6637 6.5114 Sum 13.4358 10.0415 30.8062 _ 92.8305 Yc9= L.y/L . 2.2928 Z=R+t 0.1768 in I I l The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation I Check the effectiveness of the Web f, (ycg-Z)Fy/Ycg 46.1445 ksi f2 -(B-yeg-Z)Fy/ycg -33.3723 ksi y f2/f, -0.7232• i k 4+2(1-03+2(1-W) 17.6804 h/ belt 43.9325 I 1.0521(k)05 x(h/t)x(f1/E)°5 0.4347 r (1-0.22/A)/ X 1.1362 li be 3.6464 in b, be/(3-W) 0.9794 in x b2 1.8232 in 1311-b2 2.8026 in 21web I - 2(1112)(b)3 8.0806 in4 ii S(Ly2) 92.8305 in4 (-)(S1-)(ycg)2 70.6339 in4 I'x 30.2771 in4 t lx= 1'x t 2.5130 in4 1 SeX=Ix/ycg 1.0960 in3 Cb=1.0 for combined axial load and bending moment iij 2b2d2U(b+d) 1.1304 in4 St fullSx 0.9881 in4 L„ 0.36Cbn.(E I.G.j)°5/(Fy. S,) 52.0769 ft Fe' Cbn.(E I.G.j)0.5/(L. Sf) 1372.4675 ksi Allowable Bending Moment LM„x 4.5667 kip.ft 1-21)Ma = Mnx/Ob 1.67 2.73457546 kip.ft Check Stresses Cmx 0.6-0.4*M,/M2 0.6000 Loads from Wind? Cb, (P/Pa)+ (Cmx Mx/Ma ) 0.6273 NO '. i Cb2 (P/Pa) + (Mx/Ma) 0.6364 Allowable Stress Unity I 1 Cb If((P/Pa)<= 0.15,Cb2,Cb,) 0.6273 Section is OK I 1 i I I. I Truss Bottom Chord (Tension) I I Input Data I YI Member Section I 4x2x14ga I - A=Tube Width 2 in, R I S B = Tube Length 4 in 1 • R= Corner Inner Radius 0.0938 in x I • x t=Thickness 0.083 in _ ■ KL,<= Buckling around x-x 5.27 ft j 4 i KLy= Buckling around x-x 10.5 ft j E = Modulus of Elasticity 29500 ksi - - J Fy=Yield Stress 55 ksi YI G = Shear Modulus 11300 ksi o d = Bolt diameter 0.5 in A n = Number of bolts 1 I Calculated Parameter II Applied Forces I 1-Properties of 90°corner - r= R + t/2, Centerline of Dimension 0.135 in P _ 8.947 kips u= n. r/2, Arc Length 0.213 in : c=0.637.r Distance of c.g. from center 0.086 in 2-Flat widths of flanges and webs • Flat width of Dim. a= A-(2.r+ t) 1.6464 in Flat width of Dim. b= B -(2.r+ t) 3.6464 in Calculation of Ix Element L, Length (in) Y, Distance to the center(in) L xY2 Ix, Flanges 2.a 3.2928 B/2 -t/2 1.9585 12.6303 0.0000 Web 2.b 7.2928 0 0 0.0000 8.0806 Corners 4.0 0.850 b/2 + c 1.909 3.0995 0.0000 Sum 11.4358 3.8679 15.7298 8.0806 II Calculation of ly I Element L, Length (in) X, Distance to the center(in) L x X2 ly. Flanges 2.a 3.2928 0 0 0.0000 0.7438 Web 2.b . 7.2928 A/2 -t12 0.9585 6.7001 0.0000 Corners 4.0 0.850 a/2 + c _ 0.909 0.7031 0.0000 Sum 11.4358 1.8679 _ 7.4031 _ 0.7438 3-Section Properties I A = L x t, Gross Area 0.9492 in2 An=A-nxtx (d+.0625)x2 0.8558 inn 4-Allowable Axial Load I Pa=An x Fy 47.06867 kips nt _ 1.67 _ Pa = Pn/nt 1 28.1848323 1 kips 5-Check Tension Stresses I I Loads from Wind? Cbl=(P/Pa) 0.3174 NO Allowable Stress Unity .1 1 0.3174 Section is OK I a II Column I IIII I Input Data I rl Member Section 6x4x11ga A=Tube Width 4 in 41 I B= Tube Length 6 in I R= Corner Inner Radius 0.1875 in I t=Thickness 0.12 in -"- ' -•-•-'-f'------ ' .1( b B KLx= Buckling around x-x 18.084 ft I I KLy= Buckling around x-x 16 ft .I E= Modulus of Elasticity 29500 ksi J 1 F r=Yield Stress 50 ksi YI G = Shear Modulus 11300 ksi o A I Calculated Parameter I Applied Forces 1- Properties of 90°corner M 8.642 kip.ft r= R + t/2, Centerline of Dimension 0.248 in P 0.974 kips u= n. r/2, Arc Length 0.389 in c=0.637.r Distance of c.g. from center 0.158 in 2- Flat widths of flanges and webs I Flat width of Dim. a=A-(2.r+ t) 3.385 in Flat width of Dim. b= B-(2.r+ t) 5.385 in I Calculation of Ix I Element L, Length (in) Y, Distance to the center(in) L xY2 Ix Flanges 2.a 6.77 B/2 -t/2 2.94 58.5172 0.0000 Web 2.b 10.77 0 0 0.0000 26.0259 y Corners 4.0 1.555 b/2 + c 2.850 12.6334 0.0000 Sum 19.0952 5.7902 71.1506 26.0259 I Calculation of I, I y Element L, Length (in) X, Distance to the center(in) L x X2 ly Flanges 2.a . 6.77 0 0 0.0000 6.4643 ' li Web 2.b 10.77 A/2 -t12 1.94 40.5340 0.0000 Corners 4.0 1.555 a/2 + c 1.850 5.3235 0.0000 Sum 19.0952 3.7902 45.8575 6.4643 • I Section Properties I A Lxt 2.2914 in2 Ix tx( LxY2 +lx') 11.6612 in4 ly t X(L X X2 +ly) 6.2786 in4 Sx lx/(B/2) 3.8871 in3 Sy l /(A/2) 3.1393 in rx (Ix /A)05 2.2559 in ry (ly IA)13 5 1.6553 in It I 11 it ii.Nominal Buckling Stress I KLx/rx - 96.1960 KLY/r,, 115.9903 KL/r : 115.9903 Fe R2. E/(KL/r)2 21.6411 ksi it IC (Fy/Fe)°5 1.5200 F„ 18.9792 ksi I Effective Area I Ii effective width of compression flange w/t= a/t 28.2083 X 1.0521(k)05 x(w/t)x(F„/E)°.5 0.3763 r _ (1-0.22/a.)/X 1.1039 ae 3.3850 _ in effective width of web element w/t= b/t 44.8750 I 1.0521(k)05 x(w/t)x(F„/E)°'5 0.5987 r _ (1-0.22/X)/X 1.0565 be 5.3850 in I Allowable Axial Load I Ae Ae =A-2 x t x[(a-ae)+ (b-be)) 2.29142292 in2 I P„ P„=Ae x Fn 43.4893969 kips n` 1.8 Pa = P.inc 24.1608 kips I Check Compression Stresses I' 1 Loads from Wind? Cbi I Cb1=(P/Pa) 0.0403 NO Allowable Stress Unity 1 1 0.0403 Section is OK IComputing of M„x I 1 IBy using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: I Element L, Length (in) y, Distance to top fiber(in) L.y L.y2 3. C. Flanges ae y 3.385 t/2 0.06 0.2031 0.0122 Web 2.b 10.77 B/2 3 32.3100 96.9300 C. Corners 2.0 0.7775955 c+U2 0.217658 0.1692 0.0368 T. Flanges ae 5.385 B-t/2 5.94 31.9869 190.0022 T.Corners 2.0 0.7775955 B-c 5.842 4.5430 26.5416 Sum 21.0952 15.0600 69.2122 313.5229 yeg= L.y/L 3.2809 Z=R+t 0.3075 in a I I The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation i I Check the effectiveness of the Web I f, (ycg-Z)Fy/ycg 45.3139 ksi f2 -(B-yc9-Z)Fy/ycg -36.7508 ksi y f2/f, -0.8110 k 4+2(1-03+2(1-y) 19.5018 h/ belt 44.8750 I 1.0521(k)°5 x(h/t)x(f1/E)°5 0.4190 I r (1-0.22/X)/ X 1.1335 be 5.3850 in b, be/(3-w) 1.4130 in I b2 2.6925 in b,+b2 4.1055 in 2 I web I - 2(1112)(b)3 26.0259 in4 S(Ly2) 313.5229 in4 (-)(SL)(Ycg) 2 227.0817 in4 I'x 112.4670 in4 Ix.rx t 13.4960 in4 Sex=lx/Ycg 4.1135 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 9.0929 in4 Sf fullSx 3.8871 in4 L„ 0.36Cbit.(E I.G.j)°5/(Fy. Sf) 91.2066 ft fi Fe' Cbit.(E I.G.j)0.5/(L. Sf) 700.4857 ksi Allowable Bending Moment Mnx 17.1394 kip.ft nb 1.67 Ma = Mnx/f b 10.2631188 kip.ft II Check Stresses I Cmx 0.6-0.4*M,/M2 0.6000 Loads from Wind? Cbl (P/Pa)+ (Cmx Mx/Ma ) 0.5455 NO . Cb2 (P/Pa)+ (Mx/Ma) 0.8824 Allowable Stress Unity I 1 Cb If((P/Pa)<= 0.15,Cb2,Cb,) 0.8824 Section is OK I I I • 1 , I I II Truss Knee-Brace II Input Data Member Section 2x2x15ga I Y� •A =Tube Width 2 in r• S I � B= Tube Length 2 in i ■ R= Corner Inner Radius 0.0938 in I t •=Thickness 0.072 in -" KLx= Buckling around x-x 5.35 ft $ ; g: i KLy Buckling around x-x 5.35 ft $ I ; _ E = Modulus of Elasticity 29500 ksi .4 F Y=Yield Stress 50 ksi Yi 111 - G= Shear Modulus 11300 ksi o A Calculated Parameter 0 Applied Forces 1-Properties of 90°corner M 0.000001 kip.ft r= R+ t/2, Centerline of Dimension 0.130 in P 5.146 kips u= n. r/2, Arc Length 0.204 in c=0.637.r Distance of c.g. from center 0.083 in 2-Flat widths of flanges and webs I Flat width of Dim. a=A-(2.r+ t) 1.6684 in Flat width of Dim. b= B-(2.r+ t) 1.6684 in Calculation of lx Element L, Length(in) Y, Distance to the center(in) L xY2 Ix' Flanges 2.a 3.3368 B/2 -t/2 0.964 3.1009 0.0000 Web 2.b 3.3368 0 0 0.0000 0.7740 3 Corners 4.0 0.816 b/2 +c 0.917 0.6857 0.0000 Sum 7.4892 1.8809 3.7865 0.7740 ICalculation of l,, I E 3 lement L, Length(in) X, Distance to the center(in) L x X2 I ' Flanges 2.a 3.3368 0 y 0 0.0000 0.7740 Web 2.b 3.3368 A/2 -t/2 0.964 3.1009 0.0000 Corners 4.0 0.816 a/2 +c 0.917 0.6857 0.0000 Sum 7.4892 _ 1.8809 3.7865 0.7740 I Section Properties I A L x t 0.5392 in2 Ix t x( L x Y2 +Ix') 0.3284 in" ly t x(L x X 2+ly') 0.3284 in4 1 Sx Ix/(B/2) 0.3284 in Sy lY/(A/2) 0.3284 in rx (lx/A)°5 0.7804 in ry (l,./A)°5 0.7804 in i I I I 7 f iI Nominal Buckling Stress I :‘.7-; KLx/rx 82.2705 KLy/ry 82.2705 KL/r 82.2705 Fe 1C2. E/(KL/r)2 43.0163 ksi lc (Fy/Fe)0•5 1.0781 F„ 30.7387 ksi I Effective Area I 0 i effective width of compression flange w/t= a/t 23.1722 A. 1.0521(k)05 x(w/t)x(F„/E)°.5 0.3934 r (10.22/ X)/X 1.1205 - ae 1.6684 in effective width of web element �1 w/t= b/t 23.1722 I 1.0521(k)°5 x(w/t)x(F„/E)°5 0.3934 r (1-0.22/X)/X 1.1205 be 1.6684 in j Allowable Axial Load I Ae Ae= A-2 x t x [(a-ae)+ (b-be)] 0.53922321 in2 P„ P„=Ae x F„ 16.574997 kips Ste 1.8 I:: Pa = P„icz 9.2083 kips I Check Compression Stresses Loads from Wind? Cbl I Cb1=(P/Pa) 0.5588 NO Allowable Stress Unity I 1 II 0.5588 Section is OK j Computing of Me% By using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: Element L, Length (in) y, Distance to top fiber(in) L.y L.y2 C. Flanges ae 1.6684 t12 0.036 0.0601 0.0022 Web 2.b 3.3368 B/2 1 3.3368 3.3368 C. Corners 2.0 0.40780564 c+t/2 0.118683 0.0484 0.0057 T. Flanges ae 1.6684 B-t/2 1.964 3.2767 . 6.4355 T.Corners 2.0 0.40780564 B-c 1.917 0.7819 1.4991 Sum 7.4892 5.0360 7.5039 11.2794 yn9= L.y/L 1.0020 Z=R+t 0.1658 in • Ii i= The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation Check the effectiveness of the Web I f' (yc9-Z)Fy/Ycg 41.7262 ksi f2 -(B-yc -Z)F y/Y cs 1.5306-4 ksi II Y f2/f1 -0.9953 t.., k 4+2(1-W)3+2(1-yi) 23.8784 h/ belt 23.1722 I 1.052/(k)05 x(h/t)x(f1/E)°5 0.1876 r (1-0.22/A)/X -0.9199 be 1.6684 in b1 be/(3-W) 0.4176 in b2 0.8342 in b1+b2 1.2518 in 2lweb I 2(1/12)(b)3 0.7740 in4 S(Ly2) 11.2794 in4 (-)(SL)(Ycs)2 7.5186 in4 I'x 4.5348 in4 Ix=1'xt 0.3265 in4 Sex=lx/Ycs 0.3259 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 0.3344 in4 S 1 i fullSx 0.3284 in4 L. 0.36C0.(E I.G.j)05/(Fy. Si) 34.7430 ft r Fe' Cbl.(E I.G.j)0.5/(L. Sf) 901.9477 _ ksi I Allowable Bending Moment Mnx 1.3578 kip.ft nb 1.67 - Ma = Mnx/c2b _0.81303531 kip.ft I Check Stresses I Cmx 0.6-0.4*M1/M2 0.6000 Loads from Wind? Cbi (P/Pa) + (Cmx Mx/Ma ) 0.5588 NO Cb2 (P/Pa)+ (Mx/Ma) 0.5588 Allowable Stress Unity I 1 1 Cb If((P/Pa)<= 0.15,Cb2,Cb,) 0.5588 Section is OK I I I • I I I I IlL Truss Diagonal (comp.) I Input Data I YI z Member Section 2x2x15ga ;_, A=Tube Width 2 in I • y B= Tube Length 2 in I R= Corner Inner Radius 0.0938 in I $• • t=Thickness 0.072 in -" ' - -'-'-I x b e KLx= Buckling around x-x 4.89 ft • I • • KLy Buckling around x-x 9.7 ft I E= Modulus of Elasticity 29500 ksi A. 1 F r=Yield Stress 50 ksi Yi G= Shear Modulus 11300 ksi o A II Calculated Parameter I( Applied Forces 1-Properties of 90°corner M 0.0001 kip.ft r= R+ t/2, Centerline of Dimension 0.130 in P 1.454 kips u = n. r/2, Arc Length 0.204 in c=0.637.r Distance of c.g. from center 0.083 in 2-Flat widths of flanges and webs I Flat width of Dim. a=A-(2.r+ t) 1.6684 in Flat width of Dim. b= B-(2.r+ t) 1.6684 in Calculation of Ix a.$ I Element L, Length (in) Y, Distance to the center(in) L xY2 Ix Flanges 2.a 3.3368 B/2 -t/2 0.964 3.1009 0.0000 Web 2.b 3.3368 0 0 0.0000 0.7740 Corners 4.0 0.816 b/2 + c _ 0.917 0.6857 0.0000 Sum 7.4892 1.8809 3.7865 0.7740 I Calculation of ly I Element L, Length(in) X, Distance to the center(in) L x X2 lY Flanges 2.a . 3.3368 0 0 0.0000 0.7740 Web 2.b 3.3368 A/2 -t/2 0.964 3.1009 0.0000 I Corners 4.0 0.816 a/2 + c 0.917 0.6857 0.0000 Sum 7.4892 1.8809 3.7865 0.7740 I Section Properties I A L x t 0.5392 in2 Ix tx( LxY2 +Ix) 0.3284 in4 IY t x(L x X2 +ly') 0.3284 in4 Sx lx/(B/2) 0.3284 ins Sy 1. /(A/2) 0.3284 ins rx (Ix/A)°5 0.7804 in ry (IY/A)05 0.7804 in 1111 . I • i, 1. . I I Nominal Buckling Stress KLx/rx 75.1968 KLy/ry 149.1634 KUr 149.1634 Fe n2. E/(KL/r)2 13.0857 ksi lc (Fy/Fe)0'5 1.9547 I' Fn 11.4762 ksi I Effective Area I effective width of compression flange w/t=alt 23.1722 X 1.0521(k)0'5 x(wit)x(Fn/E)°5 0.2404 r _ (10.22/X)/X 0.3530 ae 1.6684 in effective width of web element w/t= b/t 23.1722 I 1.052/(k)05 x (w/t)X(Fn/E)°.5 0.2404 r (1-0.22/X)/X. 0.3530 1 be 1.6684 in Allowable Axial Load I Ae Ae=A-2 x t x [(a-a e)+ (b-be)] 0.53922321 in2 I Pn Pn=Ae X Fn 6.18821464 kips rill n` 1.8 Pa = Pn Mc 3.4379 kips I Check Compression Stresses 3 Loads from Wind? Cb1 I Cb1=(P/Pa) 0.4229 NO Allowable Stress Unity I 1 1 _ 0.4229 Section is OK Computing of Mnx I I By using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: I Element L, Length(in) y, Distance to top fiber(in) L.y L.y2 I C. Flanges ae 1.6684 t/2 0.036 0.0601 0.0022 Web 2.b 3.3368 B/2 1 3.3368 3.3368 C. Corners 2.0 0.40780564 c+112 0.118683 0.0484 0.0057 T. Flanges ae 1.6684 B-t/2 1.964 3.2767 6.4355 T.Corners 2.0 0.40780564 B-c _ 1.917 0.7819 1.4991 Sum 7.4892 5.0360 7.5039 11.2794 I yc9= L•y/L 1.0020 Z=R+t 0.1658 in 3 3 i I . The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation .-: I - Check the effectiveness of the Web I 1 f1 (ycg-Z)Fy/yc9 f2 (g_ycy_Z)Fy/Ycg 41.7262 ksi-41.5306 ksi y f2/f1 -0.9953 k 4+2(1-w)3+2(1-y) 23.8784 h/ belt 23.1722 1 1.0521(k)015 x(h/t)x(f1/E)°5 0.1876 r (1-0.22/X)/ X -0.9199 be 1.6684 in b1 be/(3-4,) 0.4176 in b2 0.8342 in b1+b2 1.2518 in 2 I Web I - 2(1/12)(b)3 0.7740 in 4 S(Ly2) 11.2794 in 4 (-)(S1 7.5186 in 4 I'x 4.5348 in 4 lx=1'x.t 0.3265 in 4 Sex=lx/Ycg 0.3259 in3 Cb=1.0 for combined axial load and bending moment 7. j 2b2d2t1(b+d) 0.3344 in 4 Sf fullSx 0.3284 in4 L„ 0.36C0.(E I.G.j)05/(Fy. Sr) 34.7430 ft Fe' Cbn.(E I.G.j)0.5/(L. Sf) 986.7935 ksi I Allowable Bending Moment I I. M„x 1.3578 kip.ft nb n 1.67 Ma = NI./12b 0.81303531 kip.ft I Check Stresses I . I Cmx 0.6-0.4 1M1/M2 0.6000 Loads from Wind? Cb1 (P/ Pa)+ (Cmx Mx/Ma) 0.4230 NO • "• Cb2 (P/Pa)+ (Mx/Ma) 0.4231 Allowable Stress Unity I 1 Cb If((P/Pa)<=0.15,Cb2,Cb1) 0.4230 Section is OK I I I I . J. ,:. j::. 1 I Truss Diagonal(Ten.) I Input Data Ili Member Section 1 2x2x15ga 1 i A=Tube Width 2 in, /, - B = Tube Length 2 in I R = Corner Inner Radius 0.0938 in i t=Thickness I • 0.072 in x. . -,- .4,---,-. , x b B 3 KLz Buckling around x-x 4.89 ft I • • KLy= Buckling around x-x 9.7 ft I E = Modulus of Elasticity 29500 ksi _ _ i Fy=Yield Stress 55 ksi - G 3 = Shear Modulus 11300 ksi YI d = Bolt diameter 0.5 in n = Number of bolts 1 a Calculated Parameter I Applied Forces 1 31: 1-Properties of 90°corner - ` M 0.0001 kip.ft r=R + t/2, Centerline of Dimension 0.130 in P 3.04 kips u= n. r/2, Arc Length 0.204 in ilc=0.637.r Distance of c.g. from center 0.083 in 2-Flat widths of flanges and webs Flat width of Dim. a= A-(2.r+ t) 1.6684 in Flat width of Dim. b= B-(2.r+ t) 1.6684 in Calculation of lx 1 Element L, Length (in) Y, Distance to the center(in) L xY2 lx' j Flanges 2.a I 3.3368 B/2 -t/2 0.964 3.1009 0.0000 Web 2.b 3.3368 0 0 0.0000 0.7740 Corners 4.0 0.816 b/2 +c 0.917 0.6857 0.0000 Sum _ 7.4892 1.8809 3.7865 0.7740 r ICalculation of I,, I Element L, Length (in) X, Distance to the center(in) L x X2 I ' Flanges 2.a 1 3.3368 0 1 0 0.0000 0.7740 Web 2.b - 3.3368 A/2 -t/2 0.964 3.1009 0.0000 Corners 4.0 0.816 a/2 +c 0.917 0.6857 0.0000 Sum 7.4892 1.8809 3.7865 0.7740 3-Section Properties I IA= L x t, Gross Area 0.5392 in A =A nxtx (d+.0625)x2 I 0.4582 I n°2 I 1 4-Allowable Axial Load Pn=A„ x F I I r 25.2022767 kips n, 1.67 I I Pa = P„/Qt 1 15.0911836 I kips I ill 1 5-Check Tension Stresses I II Loads from Wind? Cb1=(P I Pa) 0.2014 NO Allowable Stress Unity .I 1 0.2014 Section is OK I I I I (I Truss Web (comp.) I ( Input Data I y! 1 Member Section 2x2x15ga F A=Tube Width 2 in �" j ■ 11i B= Tube Length 2 in i • • R= Corner Inner Radius 0.0938 in i • t=Thickness 0.072 in x' '--'--i-'-'---- -2 ° B I 111 KLx= Buckling around x-x 4.52 ft • I • KLy= Buckling around x-x 4.52 ft j E= Modulus of Elasticity 29500 ksi J y F Y=Yield Stress 50 ksi Yj G= Shear Modulus 11300 ksi 0 - A Calculated Parameter U Applied Forces Li 1- Properties of 90°corner M 0.0001 kip.ft >. r= R + t/2, Centerline of Dimension 0.130 in P 1.856 kips u= n. r/2, Arc Length 0.204 in c=0.637.r Distance of c.g. from center 0.083 in 2-Flat widths of flanges and webs Flat width of Dim. a=A-(2.r+ t) 1.6684 in Flat width of Dim. b= B-(2.r+ t) 1.6684 in Calculation of IX 11: I Element L, Length (in) Y, Distance to the center(in) L xY2 I% Flanges 2.a 3.3368 B/2 -t/2 0.964 3.1009 0.0000 Web 2.b 3.3368 0 0 0.0000 0.7740 Corners 4.0 0.816 b/2 + c 0.917 0.6857 0.0000 Sum 7.4892 1.8809 3.7865 0.7740 I Calculation of ly y Element L, Length (in) X, Distance to the center(in) L x X2 ly Flanges 2.a . 3.3368 0 0 0.0000 0.7740 tr Web 2.b 3.3368 A/2 -t/2 0.964 3.1009 0.0000 iii Corners 4.0 0.816 a/2 + c 0.917 0.6857 0.0000 Sum 7.4892 1.8809 3.7865 0.7740 I Section Properties I • iA L x t 0.5392 in2 (x tx( LxV2 +Ix') 0.3284 in4 IY t x(L x X2 +lY) 0.3284 in4 Ix B/2 I /(B/2) ' Sx ( ) 0.3284 in SY lY/(A/2) 0.3284 in rx (lx/A)°5 0.7804 in ry (ly/A)05 0.7804 in • I 1 I .. I I Nominal Buckling Stress KLX/rx 1 69.5071 KLy/ry KUr 69.5071 69.5071 Fe T(2. E/(KL/r)2 60.2648 ksi lc (Fy/Fe)°.b 0.9109 F0 35.3311 ksi Effective Area I I effective width of compression flange w/t= a/t 23.1722 X 1.052/(k)°5 x(w/t)x (Fn/E)05 0.4218 r _ (1-0.22/X)/X 1.1343 ae 1.6684 in effective width of web element I wit= b/t 23.1722 I 1.052/(k)°5 x(w/t)x (F„/E)05 0.4218 r (1-0.22/X)/A. 1.1343 1 be 1.6684 in Allowable Axial Load 1 I Ae Ae =A-2 x t x[(a-ae) + (b-be)] 0.53922321 in2 P„ P„=Ae x F„ 19.0513509 kips p` 1.8 I Pa = PO Mc 10.5841 kips Check Compression Stresses J" L 1 oads from Wind? Cbl I Cb1=(P/Pa) 0.1754 NO Allowable Stress Unity I 1 0.1754 Section is OK Computing of M„x I ' IBy using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: I Element L, Length (in) y, Distance to top fiber(in) L.y L.y2 I C. Flanges ae 1.6684 y t/2 0.036 0.0601 0.0022 Web 2.b 3.3368 B/2 1 3.3368 3.3368 C. Corners 2.0 0.40780564 c+t/2 0.118683 0.0484 0.0057 T. Flanges ae 1.6684 B-t/2 1.964 3.2767 6.4355 T.Corners 2.0 0.40780564 B-c 1.917 0.7819 1.4991 Sum 7.4892 5.0360 7.5039 11.2794 3 yc9= L.y/L 1.0020 Z=R+t 0.1658 in I I i i _ The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation i I Check the effectiveness of the Web fi (ycg_Z)Fy/ycg 41.7262 ksi i f2 -(B-yc9-Z)Fy/Ycg -41.5306 ksi y f2lfi -0.9953 k 4+2(1-03+2(1-y) 23.8784 h/ belt 23.1722 I 1.0521(k)0•5 x(h/t)x(f1/E)°5 0.1876 y r (1-0.22/X)/ X -0.9199 be 1.6684 in b1 be/(3-y1) 0.4176 in b2 0.8342 in b1+b2 1.2518 in 2'web I 2(1112)(b)3 0.7740 in4 S(Ly2) 11.2794 in4 (-)(SL)(ycg)2 7.5186 in4 1'x 4.5348 in4 il 11: lx=rx t 0.3265 in4 Sex=1x/Ycg 0.3259 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 0.3344 in4 $1 fullSx 0.3284 in4 L„ 0.36C0.(E I.G.j)05/(Fy. S1) 34.7430 ft Fe' Cbn.(E I.G.j)0.5/(L. Sf) 1067.5709 ksi Allowable Bending Moment I T Mnx 1.3578 kip.ft SZb 1.67 Ma = m./S2b 0.81303531 kip.ft Check Stresses 1 i Cmx 0.6 0.4*M1/M2 0.6000 Loads from Wind? Cbl (P/Pa)+ (Cmx Mx/Ma ) 0.1754 NO Cb2 (P/Pa)+ (Mx/Ma) 0.1755 Allowable Stress Unity 1 Cb If((P/ Pa)<= 0.15,Cb2,Cb1) 0.1754 Section is OK I I i FS I . I I I I Truss Web(Ten.) II it I Input Data I Member Section I 2x2x15ga I rl A =Tube Width 2 in, �. ' B = Tube Length 2 in t R = Corner Inner Radius 0.0938 in • t=Thickness 0.072 in x _ _ _ I _ _ _ • ∎ -"e B KL,<= ._1.._._.__ I Buckling around x-x 2.45 ft KLY Buckling around x-x 2.45 ft I • • E = Modulus of Elasticity I Y 29500 ksi Fy=Yield Stress 55 ksi G = Shear Modulus 11300 ksi rl d = Bolt diameter 0.5 in o n = Number of bolts 1 a I Calculated Parameter II Applied Forces 1-Properties of 90°corner M I 1.142 I kip. I t r= R + t/2, Centerline of Dimension 0.130 in P 1.142 kips u = n. r/2, Arc Length 0.204 in c=0.637.r Distance of c.g. from center 0.083 in 2-Flat widths of flanges and webs Flat width of Dim. a=A-(2.r+ t) l 1.6684 in Flat width of Dim. b= B-(2.r+ t) 1.6684 in Calculation of I, I Element L, Length (in) Y, Distance to the center(in) L xY2 Ix Flanges 2.a I 3.3368 B/2 -t/2 1 0.964 3.1009 0.0000 Web 2.b 3.3368 0 0 0.0000 0.7740 Corners 4.0 0.816 b/2 + c 0.917 0.6857 0.0000 Sum 7.4892 1.8809 3.7865 0.7740 Calculation of ly I Element L, Length(in) X, Distance to the center(in) L x X2 I Flanges 2.a 3.3368 0 0 r I 0.0000 0.7740 Web 2.b - 3.3368 A/2-t/2 0.964 3.1009 0.0000 Corners 4.0 0.816 a/2 + c 0.917 0.6857 0.0000 Sum _ 7.4892 1.8809 3.7865 0.7740 I 3-Section Properties I IA= L x t, Gross Area 0.5392 in2 A„=A nxtx(d+.0625)x2 I 0.4582 I n° 1 I 4-Allowable Axial Load r„=A„ xFy I I 25.2022767 kips I L 1.67 I Pa = Pn inn 1 15.0911836 I kips I I 5-Check Tension Stresses I i Loads from Wind? Cbl=(P/Pa) 0.0757 NO Allowable Stress Unity 1 1 0.0757 Section is OK • I 3 r _ -0 a) . a) Y Y Y Y a N N N x- N 0 0 0 0 CA Y I., CO 1 l() _ (] (] 0 CO CO CO CO o o Ci Cn r` v v v IIf) Cr) 0 CO a) a) CO CO CO CO CO CO il C L -C M M M M M M a) (n p (n cO 00 00 CO 00 00 0 O N U o CO CO CO CO CO OO L m a) Z m = N O Cr N 'i 4) a C p c r- M V' V V in � II C N W .L C3) O) V' N N N N C? (0 N U U) (0 N N I` M CO CO•_� II II -Q O N L a O I� NI a0 CO CO CO < a) a) a) CU .-. m m a) O a L . C i A M L C C O) O II C (0 a p O YO N a) O Z 0 V V O M CO M 0 O a) L a) N - L- W a) CO CO V 4 U) N (n R In Cri in CO i a.) a, a) c U U L N a) LO H c- co a) C C CO) Z O I-' Z N N (C0 .a 0 N a) a) a) N a) ,-7 E m 0) 0) O CO CO 00 L - 0 O N O CO CO CO CO CO CO•n (_n _m a) >o Z % CnCnI� vv v aaU -1W W• x Q M I- M CO CO Y M Co C) Cn d 3 a) CD Cr) Co U W CO CO M x- Cn O 1 CV LL x C (V r- .- (a co Co in CO CO 10 C C C C C C .U) ._ ._N ._N a) CO CO V' CI) LC) LO co CT N In LO in Q O O r) O O O i i ir., LC) 10 N N N- a) CO (0 CD N N N O V O CO 0 CO CO N r t` t` O c- N co M O in to CO Y 0 0 0 0 0 I� (4 0 0 0 0 0 0 C) O L 1.:. 1- L N V CO N N N a) Z. _ $._ L Q L L O` C (0 [6 C6 (U CO CL C O U C p) • US CO y., a) a) ■ In Cn LS) N / C - O Q) in V C .r ,- .- m N a) C i O U x V' N N N i a) O) CY) '(p f0 E U N X X X X X ir' L 'p C a) L OO O CO N N N a) N ai N CL) (SS O Jr)) IV C c O O Q C .0 Q) �'p (a W (a •'U L E a) U) 73 o C C) E in (a a) 0 0 p d ' �. O C O 0 c0 Q_0 Q) N O C (n 1-+ d O L a) i u) a) U C R L U C c6 L a) o -0 O a) 0 0 00 'm N - O U- o 0 > a) co n p >- D 0 w U T C o co W 0 II I C II II It II II U ^ II II. i- O 0 Y 4 ,---a a) (n a) a) IL LL IL• L1_ U- CO J rat - - I 3 •••• JOB TITLE Growing Up Greens ROUGH BEACH,FL BROTHERS INC. JOB NO. 141010 SHEET NO. summir■ CALCULATED BY M.ALY,PE DATE CHECKED BY DATE WIND LOADS - PARALLEL TO THE RIDGE Truss Span = 31.50 ft Roof Slope )= 6 11-Height from Eave to Ridge= 7.88 ft Gable Glazing Height= 16.00 ft Gable Area exposed to wind= 376.0 sf '' Windward Wall Wind Pressure= 10.0 psf Leeward Wall Wind Pressure= 1.9 psf Number of Purlin per Slope = 3 Number of Spaces Between Purlin = 6 Horiz. Dist. B/W Purlin(x)= - 5.87 ft . Bay Spacing(y)= 12.00 ft Length of Roof Brace(z)= 13.36 ft I Total Windward Force= 3.75 kips Total Leeward Force= 0.70 kips I. • I I if ill I • I I I I I I Sidewall BRACING FOR LATERAL LOADS - Number of sidewall = 2 Force to sidewall = 2.22 kips number of Bracing per wall = 1 Force per Set of Bracing = 2.22 kips Height of Braced Bay= 16.00 ft Width of Braced Bay= 12.00 ft ' Length of Brace= 20.00 ft Tension in Diagonat Brace= 3.70 kips i Brace(Trial section)= 1.315 dia. 14 ga. lcFy= 50 ksi F„ = 65 ksi Brace X-sectional Area(A)= 0.31 in2 '' Least Radius of Gyration(r)= 0.437 in Brace Thickness(t)= - 0.083 in 1 ii Bolt Diameter(d) = 0.500 in Tensile Force in Brace due to Lateral Loads= 3.7 kip An= net area, An=A-2*(d+.0625)*t 0.22 in2 Ab= bolt area,p*d2/4 0.20 in2 Qi=ASD Tension Factor 1.670 S2b=ASD Bearing Factor AISI Section E3.3.1 2.500 S25=ASD Shear Factor Table E3.4-1 2.400 Fa,=Nominal Shear Strength Table E3.4-1 ? 1 54 ksi (Assumes Threads INCLUDED in Shear Plane) Tall= Based on tension on net area, P1,*Fy/S2i 7.167 kips OK Tail=Based on bearing on net area, 3*d*t*F„/c2b 6.474 kips OK Tail= Based on Bolt shear strength, /i,*FnA s 4.418 kips OK I I I. I Gable Girt Design Girt Span= 7.88 ft Girt spacing= • 3.50 ft Girt Cross Section 2x2x15ga I A= 0.5241 in2 Ix= 0.3454 in4 Iy= 0.3454 in" : Sx= 0.3454 in3 Sy= 0.3454 in3 rx= 0.8117 in ry= 0.8117 in Wind Load on girts= 9.9 psf Moment Mx 0.27 k.ft Allowable Ma= 0.81 k.ft Flexure strength is OK check defelction Sa=L/240= 0.39 in 8=5 W L4/384 El= 0.30 in deflection is OK • r. 1. • r I 1 r ill'; V_ Center Gable Column jr' Input Data r Member Section 6x4x14ga t•' A=Tube Width 4 in 4• j • B= Tube Length 6 in j i R= Corner Inner Radius 0.0938 in j y t=Thickness 0.083 in x• - - -� - - - -x b B rr KLX Buckling around x-x 23.88 ft • • • KLy= Buckling around x-x 23.88 ft j • 1' E= Modulus of Elasticity 29500 ksi = L. F r=Yield Stress 50 ksi Yi G= Shear Modulus 11300 ksi 0 A t'.: Calculated Parameter Applied Forces 1-Properties of 90°corner M 5.58 kip.ft it 7 r= R + t/2, Centerline of Dimension 0.135 in P _ 0.000001 kips u. R. r/2, Arc Length 0.213 in c=0.637.r Distance of c.g. from center 0.086 _ in 2- Flat widths of flanges and webs i: Flat width of Dim. a= A-(2.r+ t) 3.6464 in Flat width of Dim. b= B-(2.r+ t) 5.6464 _ in Calculation of lx 11' Element L, Length (in) Y, Distance to the center(in) L xY2 Iz Flanges 2.a 7.2928 B/2 -t/2 2.9585 63.8319 0.0000 Web 2.b 11.2928 0 0 0.0000 30.0029 Corners 4.0 0.850 b/2 + c 2.909 7.1963 0.0000 Sum 19.4358 5.8679 71.0281 30.0029 I Calculation of ly I 114-'• Element L, Length (in) X, Distance to the center(in) L x X2 1, Flanges 2.a . 7.2928 0 0 0.0000 8.0806 Web 2.b 11.2928 A/2 -t/2 1.9585 43.3160 0.0000 Corners 4.0 0.850 a/2 + c 1.909 3.0995 0.0000 Sum 19.4358 3.8679 46.4156 8.0806 r I Section Properties A L x t 1.6132 in2 Ix t x( L x Y2 +lx') 8.3856 in4 Iy t x(L x X2 +I,;) 4.5232 in4 Sx lx/(B/2) 2.7952 in' .} Sy l /(A/2) 2.2616 ins rx (Ix/A)°s 2.2800 in ry (ly/A)°s 1.6745 in I I • i I til Nominal Buckling Stress I KLx/rx 125.6866 KLy/ry 171.1330 ', KL/r 171.1330 Fe - TC2. E/(KUr)2 9.9416 ksi Ic (Fy/Fe)0'5 2.2426 Fn 8.7187 ksi Effective Area I. 3 effective width of compression flange w/t= alt 43.9325 A, 1.0521(k)°5 x(w/t)x(Fn/E)0'5 0.3973 r _ (1-0.22/X)/A. 1.1232 ae _ 3.6464 _ in effective width of web element I w/t= b/t 68.0289 I 1.052/(k)0'5 x(w/t)x(Fn/E)°5 0.6152 r (1-0.22/X)/X 1.0442 I be 5.6464 in Allowable Axial Load I Ae Ae =A-2 x t x[(a-ae) + (b-be)] 1.613169 in2 Pn Pn=Ae x Fn 14.0648118 kips fi` 1.8 Pa = P./mac 7.8138 kips Check Compression Stresses I I Loads from Wind? Cbl I Cb1=(P/Pa) 0.0000 NO Allowable Stress Unity i 1 I 0.0000 Section is OK IComputing of Mnx By using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: I Element L, Length (in) y, Distance to top fiber(in) L.y L.y2 C. Flanges ae 3.6464 t/2 0.0415 0.1513 0.0063 Web 2.b 11.2928 B/2 3 33.8784 101.6352 I C. Corners 2.0 0.42508554 c+t/2 0.127686 0.0543 0.0069 T. Flanges ae 5.6464 B-t/2 5.9585 33.6441 200.4682 T.Corners 2.0 0.42508554 B-c 5.914 2.5139 14.8666 Sum 21.4358 15.0415 70.2420 316.9832 ycg= L.y/L 3.2769 Z=R+t 0.1768 in I I I The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation f Check the effectiveness of the Web f, (ycg-Z)FVybg 47.3023 ksi f2 -(B-ybg-Z)Fy/ycg -38.8534 ksi Y - f2/f1 -0.8214 k 4+2(1-w)3+2(1-yr) 19.7275 h/ belt 68.0289 I 1.052/(k)0'5 x(h/t)x(f1/E)°5 0.6452 r (1-0.22/X)/J_ 1.0214 s be 5.6464 in b1 be/(3-4/) 1.4776 in 1 i b2 _ 2.8232 in b1+b2 4.3008 in 2 1 wen I - 2(1112)(b)3 30.0029 in4 S(Ly2) 316.9832 in4 s (")(S(Ly2) 230.1728 in4 I'x 116.8133 in4 il: Ix=l'x t 9.6955 in4 Sex=lx/ycg 2.9588 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 7.5724 in4 i Sf fullSx 2.7952 in4 L„ 0.36C0.(E I.G.j)05/(Fy. Sf) 98.1516 ft Fe' Cbn.(E I.G.j)0.5/(L. Sf) 570.8614 ksi s Allowable Bending Moment Mnx 12.3283 kip.ft S2b 1.67 Ma = Mix/S b 7.38219122 kip.ft Check Stresses Cmx 0.6 0.4`M,/M2 0.6000 Loads from Wind? Cbl (P/ Pa)+ (Cmx Mx/Ma ) 0.4535 NO Cb2 (P/Pa)+ (Mx/Ma) 0.7559 Allowable Stress Unity 1 1 Cb If((P/Pa)<= 0.15,Cb2,Cb1) 0.7559 Section is OK i 11 IP i I! I:: II Gable Column#2 I) I Input Data I rl Member Section 4x4x8ga A=Tube Width 4 in 4" I i B= Tube Length 4 in i R=Corner Inner Radius- 0.1875 in I • • t=Thickness 0.165 in -"• • - --+.- -•-- ; •-" b B KLx= Buckling around x-x 19.91 ft KLy= Buckling around x-x 19.91 ft E= Modulus of Elasticity 29500 ksi - A. Fy=Yield Stress 50 ksi r i G = Shear Modulus 11300 ksi o A Calculated Parameter I Applied Forces j' 1- Properties of 90°corner M 3.88 kip.ft r= R+ U2, Centerline of Dimension 0.270 in P 0.000001 kips 111;. u = n. r/2,Arc Length 0.424 in c=0.637.r Distance of c.g. from center 0.172 in 2-Flat widths of flanges and webs Flat width of Dim. a=A-(2.r+ t) 3.295 in Flat width of Dim. b= B-(2.r+ t) 3.295 in ■ 1 Calculation of Ix Element L, Length (in) Y, Distance to the center(in) L xY2 lx' Flanges 2.a 6.59 B/2 -U2 1.9175 24.2302 0.0000 Web 2.b 6.59 0 0 0.0000 5.9623 Corners 4.0 1.697 b/2 +c 1.819 5.6166 0.0000 Sum 14.8766 3.7370 _ 29.8467 _ 5.9623 Calculation of ly Element L, Length(in) X, Distance to the center(in) L x X2 ly. Flanges 2.a 6.59 0 0 0.0000 5.9623 Web 2.b 6.59 A/2-U2 1.9175 24.2302 0.0000 Corners 4.0 1.697 a/2 + c 1.819 5.6166 0.0000 Sum 14.8766 3.7370 29.8467 5.9623 I Section Properties I 3 A L x t 2.4546 in2 Ix t x( L x Y2 +1x) 5.9085 in4 ly t x(L x X2 +ly) 5.9085 in4 Sx lx/(B/2) 2.9542 in Sy I /(A/2) 2.9542 in rx (Ix/A)°5 1.5515 in ry (ly/A)0 5 1.5515 in I 1 I I I INominal Buckling Stress KLx/rx 153.9953 KLy/ry 153.9953 KL/r 153.9953 Fe n2. E/(KL/r)2 12.2774 ksi lc (Fy/Fe)0'5 2.0180 F„ 10.7673 ksi Effective Area effective width of compression flange w/t=alt 19.9697 I rX 1.0521(k)°5 x(w/t)x(Fn/E)°5 0.2007 r (1-0.22 /X)/ X -0.4798 - ae 3.2950 in effective width of web element 1 li w/t= b/t 19.9697 I 1.052/(k)°5 X(w/t)x(F„/E)°5 0.2007 r (1-0.22/X)/ X -0.4798 be 3.2950 in i'... Allowable Axial Load Ae Ae = A-2 x t x [(a-ae) + (b-be)] 2.45463438 in2 Pn Pn= Ae x Fn 26.4297485 kips ii S2c 1.8 Pa = P„inc - 14.6832 kips Check Compression Stresses Loads from Wind? Cbl I Cb1=(P/ Pa) 0.0000 NO Allowable Stress Unity I 1 0.0000 _ Section is OK Computing of Mnx i By using the effective width of compression flange and assuming the web is fully effective, the neutral axis can be located as follow: , Element L, Length (in) y, Distance to top fiber(in) L.y L.y2 C. Flanges ae 3.295 t/2 0.0825 0.2718 0.0224 Web 2.b 6.59 B/2 2 13.1800 26.3600 C. Corners 2.0 0.848286 c+t/2 0.25449 0.2159 0.0549 T. Flanges ae 3.295 B-U2 3.9175 12.9082 50.5677 T.Corners 2.0 0.848286 B-c 3.828 3.2472 12.4305 i Sum 14.8766 10.0825 29.8231 89.4356 y,9, L.y/ L 2.0047 Z=R+t 0.3525 in• 11 i 1 if The max. stress of 50 ksi ocurs in the compression flange as assumed in the calculation Check the effectiveness of the Web fi (Ycg-Z)Fy/Ycg 41.2082 ksi g. f2 -(B-yc9-Z)FyJyc9 -40.9735 ksi y f2/f1 -0.9943 k 4+2(1-03+2(1-0 23.8523 h/ belt 19.9697 1.0521(k)05 x(h/t)x(f1/E)°.5 0.1608 r (1-0.22/X)/X. -2.2916 be 3.2950 in b, be/(3-Y) 0.8249 in If b2 1.6475 in b1+b2 2.4724 in 2 l web I 2(1112)(b)3 5.9623 in4 S(Ly2) 89.4356 in4 3 (-)(S1 )(Ycy)2 59.7866 in4 I'x 35.6114 in4 Ix=rx t 5.8759 in4 Sex=lx/Ycg 2.9310 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 5.9027 in4 Sr fullSx 2.9542 in4 Lu 0.36C0.(E I.G.j)05/(Fy. S1) 68.8245 ft Fey Cblt.(E I.G.j)0.5/(L. Sf) 480.1082 ksi Allowable Bending Moment I Mnx 12.2127 kip.ft nb 1.67 Ma = Mnx/nb 7.31297989_ kip.ft Check Stresses I Cmx 0.6-0.4 1M1/M2 0.6000 Loads from Wind? Cbi (P/Pa)+ (Cmx Mx/ Ma ) 0.3183 NO Cb2 (P/Pa)+ (Mx/Ma) 0.5306 Allowable Stress Unity I 1 1 Cb If((P/Pa)<= 0.15,Cb2,Cb,) 0.5306 Section is OK I I I • I I • 1 - Job N1 Sheet Rev 141010 REACTIONS %Software licensed to Part Job Title Growing Up Greens Ref By DaN26-Jun-14 Chd Client ATLANTIC BEACH,FL File Structurel.std IDatehhime 04-Mar-2007 13:58 Reactions it Horizontal Vertical Horizontal Moment Node L/C FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip-ft) (kip-ft) t1F7 10 11:D 0.017 2.041 0.000 0.000 0.000 -0.105 Lii 12:D+L 0.035 4.279 0.000 0.000 0.000 -0.220 13:D+BSL+DSL 0.017 2.041 0.000 0.000 0.000 -0.105 14:D+USL 0.017 2.041 0.000 0.000 0.000 -0.105 ti 15:D+0.45W1+ -1.387 3.531 0.000 0.000 0.000 6.337 16:D+0.45W2+ -0.958 2.630 0.000 0.000 0.000 5.228 17:D+0.45W3+ 0.148 2.370 0.000 0.000 0.000 0.600 t 18:D+0.45W4+ 0.786 1.576 0.000 0.000 0.000 -2.137 19:D+0.45W1+ -1.401 1.853 0.000 0.000 0.000 6.424 20:D+0.45W2+ -0.971 0.952 0.000 0.000 0.000 5.314 21:D+0.45W3+ 0.135 0.692 0.000 0.000 0.000 0.687 • 22:D+0.45W4+ 0.772 -0.102 0.000 0.000 0.000 -2.050 23:D1-0.45W1+ -1.401 1.853 0.000 0.000 0.000 6.424 24:D+0.45W2+ -0.971 0.952 0.000 0.000 0.000 5.314 25:D+0.45W3+ 0.135 0.692 0.000 0.000 0.000 0.687 26:D+0.45W4+ 0.772 -0.102 0.000 0.000 0.000 -2.050 27:D+0.525E+0 -0.020 3.690 0.000 0.000 0.000 0.206 28:D+.0.525E+ -0.033 2.012 0.000 0.000 0.000 0.292 n 29:D+0.525E+0 -0.033 2.012 0.000 0.000 0.000 0.292 30:0.6D+0.6W1 -1.880 0.974 0.000 0.000 0.000 8.642 31:0.6D+0.6W2 -1.307 -0.227 0.000 0.000 0.000 7.163 32:0.6D+0.6W3 0.167 -0.575 0.000 0.000 0.000 0.993 33:0.6D+0.6W4 1.017 -1.633 0.000 0.000 0.000 -2.657 34:0.6D+0.7E -0.057 1.186 0.000 0.000 0.000 0.467 35:COMBINAT -1.875 1.586 0.000 0.000 0.000 8.611 36:COMBINAT -1.302 0.385 0.000 0.000 0.000 7.131 if37:COMBINAT 0.172 0.038 0.000 0.000 0.000 0.961 38:COMBINAT 1.022 -1.021 0.000 0.000 0.000 -2.688 19 11:D 0.000 4.190 0.000 0.000 0.000 -0.000 • 12:D+L 0.000 8.783 0.000 0.000 0.000 -0.000 13:D+BSL+DSL 0.000 4.190 0.000 0.000 0.000 -0.000 14:D+USL 0.000 4.190 0.000 0.000 0.000 -0.000 15:D+0.45W1+ -0.545 6.538 0.000 0.000 0.000 4.264 i 16:D+0.45W2+ -0.546 5.018 0.000 0.000 0.000 4.272 17:D+0.45W3+ -0.211 5.171 0.000 0.000 0.000 1.649 18:D+0.45W4+ 0.000 3.486 0.000 0.000 0.000 -0.000 19:D+0.45W1+ -0.545 3.094 0.000 0.000 0.000 4.264 20:D+0.45W2+ -0.546 1.574 0.000 0.000 0.000 4.272 21:D+0.45W3+ -0.211 1.727 0.000 0.000 0.000 1.649 22:D+0.45W4+ 0.000 0.042 0.000 0.000 0.000 -0.000 23:D+0.45W1+ -0.545 3.094 0.000 0.000 0.000 4.264 24:D+0.45W2+ -0.546 1.574 0.000 0.000 0.000 4.272 25:D+0.45W3+ -0.211 1.727 0.000 0.000 0.000 1.649 +0.45W4+ • 0.000 0.042 0.000 0.000 000 -0.000 Print Time/Date:09/027/620:D1+0.45W4+ 11:21 STAAD.Pro V8i 20.07.05.15 0. Print Runt of 2 11 I Fop- --i - Job No Sheet No Rev 141010 REACTIONS Software licensed to Part Job Title Growing Up Greens Ref I By Date26-Jun-14 chd Client ATLANTIC BEACH,FL File Structurel.std Date/Time 04-Mar-2007 13:58 3 Reactions Cont... Horizontal Vertical Horizontal Moment Node L/C FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip-ft) (kip-ft) 27:0+0.525E+0 -0.052 7.635 0.000 0.000 0.000 0.408 28:D+.0.525E+ -0.052 4.190 0.000 0.000 0.000 0.408 id 29:0+0.525E+0 -0.052 4.190 0.000 0.000 0.000 0.408 30:0.6D+0.6W1 -0.726 1.052 0.000 0.000 0.000 5.685 31:0.60+0.6W2 -0.728 -0.975 0.000 0.000 0.000 5.696 32:0.60+0.6W3 -0.281 -0.770 0.000 0.000 0.000 2.199 33:0.6D+0.6W4 0.000 -3.017 0.000 0.000 0.000 -0.000 34:0.6D+0.7E -0.069 2.514 0.000 0.000 0.000 0.544 35:COMBINAT -0.726 2.309 0.000 0.000 0.000 5.685 I 36:COMBINAT -0.728 0.282 0.000 0.000 0.000 5.696 37:COMBINAT -0.281 0.487 0.000 0.000 0.000 2.199 38:COMBINAT 0.000 -1.760 0.000 0.000 0.000 -0.000 I 30 11:D -0.017 2.041 0.000 0.000 0.000 0.105 12:0+1 -0.035 4.279 0.000 0.000 0.000 0.220 13:D+BSL+DSL -0.017 2.041 0.000 0.000 0.000 0.105 I 14:D+USL -0.017 2.041 0.000 0.000 0.000 0.105 15:D+0.45W1+ -0.805 3.259 0.000 0.000 0.000 4.984 16:D+0.45W2+ -1.241 2.383 0.000 0.000 0.000 6.127 17:D+0.45W3+ -0.553 2.564 0.000 0.000 0.000 2.612 I 18:D+0.45W4+ -0.786 1.576 0.000 0.000 0.000 2.137 1 19:D+0.45W1+ -0.791 1.581 0.000 0.000 0.000 4.898 20:D+0.45W2+ -1.228 0.705 0.000 0.000 0.000 6.041 21:D+0.45W3+ -0.540 0.885 0.000 0.000 0.000 2.526 I 22:D+0.45W4+ -0.772 -0.102 0.000 0.000 0.000 2.050 23:D+0.45W1+ -0.791 1.581 0.000 0.000 0.000 4.898 24:D+0.45W2+ -1.228 0.705 0.000 0.000 0.000 6.041 25:D+0.45W3+ -0.540 0.885 0.000 0.000 0.000 2.526 26:13+0.45W4+ -0.772 -0.102 0.000 0.000 0.000 2.050 27:0+0.525E+0 -0.080 3.748 0.000 0.000 0.000 0.589 28:D+.0.525E+ -0.067 2.070 0.000 0.000 0.000 0.502 I 29:D+0.525E+0 -0.067 2.070 0.000 0.000 0.000 0.502 30:0.6D+0.6W1 -1.043 0.611 0.000 0.000 0.000 6.453 31:0.6D+0.6W2 -1.625 -0.557 0.000 0.000 0.000 7.978 32:0.6D+0.6W3 -0.707 -0.316 0.000 0.000 0.000 3.291 33:0.60+0.6W4 -1.017 -1.633 0.000 0.000 0.000 2,657 34:0.60+0.7E _ -0.077 1.264 0.000 0.000 0.000 0.593 35:COMBINAT -1.048 1.224 0.000 0.000 0.000 6.485 36:COMBINAT -1.630 0.056 0.000 0.000 0.000 8.009 37:COMBINAT -0.712 0.296 0.000 0.000 0.000 3.322 38:COMBINAT_ -1.022 -1.021 0.000 0.000 0.000 2.688 I• Print Time/Date:09/07/2014 11/1 STAAD.Pro V8i 20.07.05.15 Print Run 2 of 2 I i-:; Company : Rough Brothers Inc. July 9, 2014 =p Designer : M.A1Y Job Number : 141010 Growing Up Greens Checked By: I X Bolt X(in) Z(in) i i1 3.5 3.5 2 -3.5 3.5 - 3 3.5 -3.5 ' 4 -3.5 ; -3.5 ZE--- ..s I o 1 � t. i -'J in Geometry and Materials - Length 10. in Column Shape TU6X4X3 Anchor Bolt Diameter .5 in Width 10. in Column eX 0. in Anchor Bolt Material A307 Thickness .5 in Column eZ 0. in Anchor Bolt Fu 60. ksi Base Plate Fy 36. ksi Column to Edge Min (X) .5 in Anchor Bolt E 29000. ksi Ilf Base Plate E 29000. ksi Column to Edge Min (Z) .5 in AB Projected Length 2 in Bearing Fp 2.101 ksi HSS Tube X-sides welded AB to AB Min Spacing 1 in Bearing Fc' 4. ksi HSS Tube Z-sides welded AB to Stiffner Min Spacing 1 in Pedestal Length 36 in Plain Base Plate Connection AB to Column Min Spacing 1 in Pedestal Width 36 in Vx Shear Lug NOT present AB to Edge Min Spacing 1 in Analyze Base Plate as Flexible Vz Shear Lug NOT present AB Row Min Spacing 1 in Fp Based on AISC J9 Criteria Coarse Solution Selected Priority is AB to Column Spacing AISC ASD 9th Include Threads for AB Design Square Base Plate Required AB Fv, Ft based on AISC Criteria Loads il P(k) Vx(k) Vz(k) Mx(k-ft) Mz(k-ft) Reverse DL 2.041 .017 -.105 No LL 2.238 - .018 -.115 No if WL -.251 -1.89 8.705 No EL -.056 -.059 .757 No Base Plate Stress and Bearing Result i Base Plate Stress(ksi) Bearing Pressure(ksi) Description Load Sets Allowable ASIF U.C. Allowable ABIF U.C. AISC EQ.1 1DL 27. 1. .006 2.8 1. .032 AISC EQ.2 1 DL+1 LL 27. 1. .013 2.8 1. .067 AISC EQ.3(W) 1 DL+1 WL 35.991 1.333 .903 2.8 1. .625 AISC EQ.3(E) 1 DL+1 EL 35.991 1.333 .019 2.8 1. .09 . AISC EQ.4(W) 1 DL+1 LL+1 WL 35.991 1.333 .826 2.8 1. .608 i AISC EQ.4(E) 1 DL+1 LL+1 EL 35.991 1.333 .013 2.8 1. .089 RISABase Version 1.02 [Z:\Engineering Projects\Commercia11141010 Atlantic Beach\A-FRAME\Florida Btfildijcg1Code 20101m I I t... Company : Rough Brothers Inc. July 9, 2014 Designer : M.ALY Job Number : 141010 Growing Up Greens Checked By: I Bearing Contours (ID " 09 187 r.- 1.751 �'1 D , ® (ksi) ®(ksi) ®(ksi) I0 NI0 ■0. 1 I 1DL 1 DL+1 LL 1 DL+1 WL Allowable : 2.8 ksi Allowable : 2.8 ksi Allowable : 2.8 ksi U.C. : .032 U.C. : .067 U.C. : .625 El 252 -- 1.703 - - 251 (ksi) — is 1.703 IN i 0 M 0. •0. ■0. 1DL+1EL 1 DL+1 LL+1 WL 1 DL+1 LL+1 EL Allowable : 2.8 ksi Allowable : 2.8 ksi Allowable : 2.8 ksi U.C. : .09 U.C. : .608 U.C. : .089 Base Plate Stress Contour 1111 .17 ®.357 : 07 32.5 * ll(ksi) (ksi) 410 (ksi) •.014 ■.03 0. 1 1DL 1 DL+1 LL 1 DL+1 WL Allowable : 27. ksi Allowable : 27. ksi Allowable : 35.991 ksi U.C. : .006 U.C. : .013 U.C. : .903 III .7 ® 29.735 48 Lill: ilEt(ksi) (ksi) ®(ksi) ■.006 ■0. III.019 I 1DL+1EL 1 DL+1 LL+1 WL 1 DL+1 LL+1 EL Allowable : 35.991 ksi Allowable : 35.991 ksi Allowable : 35.991 ksi U.C. : .019 U.C. : .826 U.C. : .013 1 a RISABase Version 1.02 {Z:\Engineering Projects\Commercia11141010 Atlantic Beach\A-FRAME\Florida Bd t Z ode 2010\m 3 I C IC Company : Rough Brothers Inc. July 9, 2014 Designer : M.AtY Job Number : 141010 Growing Up Greens Checked By: (Y iip' Anchor Bolt Results Description Load Sets Bolt Tens.(k) 'Vx(k) Vz(k) Ft(ksi) Fv(ksi) Unity AISC EQ.1 1 DL 1 .004 0. -.004 N.A. N.A. N.A. 2 .006 0. -.004 N.A. N.A. N.A. - 3 .003 0. -.004 N.A. N.A. N.A. 4 . .004 0. -.004 N.A. N.A. N.A. AISC EQ.2 1 DL+1 LL '1 .01 0. -.009 N.A. N.A. N.A. 2 .014 0. -.009 ' N.A. ' N.A. 1 N.A. 3 .009 0. -.009 N.A. N.A. N.A. 4 .01 0. .009 N.A. N.A. N.A. AISC EQ.3(W) 1 DL+1 WL 1 8.635 0. .468 N.A. N.A. N.A. 2 1 8.536 0. .468 N.A. N.A. N.A. I 3 0. 0. .468 N.A. N.A. N.A. 4 .057 0. .468 N.A. N.A. N.A. AISC EQ.3(E) 1DL+1EL 1 i .182 0. .01 N.A. N.A. N.A. 2 .179 0. .01 N.A. N.A. N.A. I. ' 3 0. 0. .01 N.A. N.A. N.A. 4 .002 0. .01 N.A. N.A. N.A. AISC EQ.4(W) 1 DL+1 LL+1 WL 1 7.895 0. .464 N.A. N.A. N.A. 2 7.802 0. .464 N.A. N.A. N.A. 3 0. 0. .464 N.A. N.A. N.A. 4 0. 0. .464 N.A. N.A. N.A. AISC EQ.4(E) 1DL+1LL+1EL 1 .007 0. .006 N.A. N.A. N.A. I 2 .006 0. .006 N.A. N.A. N.A. 3 .011 0. .006 N.A. N.A. N.A. 4 .017 0. .006 N.A. N.A. N.A. 1 I I • i I I RISABase Version 1.02 [Z:\Engineering ProjectslCommercia11141010 Atlantic Beach\A-FRAME\Florida Bilitcitjtg 20101m I I 3. 1-4116.-ril ... .. _. .. www.hilti.us Profis Anchor 2.4.7 Company: Page: 1 Specifier: Project: Growing Up Greens Address: Sub-Project I Pos.No.' Phone I Fax: I Date. 7/9/2014 E-Mail: Specifiers comments: 1 Input data _ 0 Anchor type and diameter: HIT-HY 200+HAS 1/2 E II ffective embedment depth. h -7.008 in.(h =10.000 in. """'""°" el.opi- eC1irM ) Material: 5.8 Evaluation Service Report: ESR-3187 Issued I Valid: 3/1/2014 1 3/1/2016 Proof: design method ACI 318/AC308 Stand-off installation: el,=0.000 in.(no stand-off);t=0.750 in. Anchor plate. Ix x11,x t= 10.000 in.x 10.000 in.x 0.750 in.;(Recommended plate thickness:not calculated) ill Profile: -Rectangular HSS(AISC):(L x W x T)=6.000 in.x 4.000 in.x 0.125 in. Base material: cracked concrete,2500,f�=2500 psi:h=420.000 in..Temp.short/long:32/32°F ; Installation: hammer drilled hole,installation condition:dry Reinforcement: tension:condition B,shear:condition B:no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E.or F) no Geometry[in.]&Loading[kip,ft.kip] Z I I 4.V A co 0 0o ____--r--- I O \ 1 A 4 G 0.75 I n �g1 33qq. F A i ce} i¢ z.44. — 7 II ::,, ,.. . ‘...., X I Input data and results must be checked for agreement with the existing conditions and for plausibility/ I PROFIS Anchor(c)2003.2009 Hilti AG.FL-9494 Schaan Hilti is a registered Trademark of Hite AG.Schaan i I•■III6TI www.hilti.us _ Profis Anchor 2.4.7 Company: Page: 2 Specifier: Project: Growing Up Greens Address: Sub-Project I Pos.No: Phone I Fax I Date: 7/9/2014 s E-Mail: 2 Load case/Resulting anchor forces ii. Load case.Design loads Q 3 0 0 4 Te ilDn Anchor reactions(kip] iTension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 0.000 0.470 0.470 0.000 2 0.000 0 470 0.470 0.000 �x 3 6.255 0.470 0.470 0.000 4 6.255 0.470 0.470 0.000 j max.concrete compressive strain: 0.37[%aJ max.concrete compressive stress: 1616[psi] resulting tension force in(x/y)=(0.00013.500): 12.510[kip] 1 t. •, . .. resulting compression force in(x/y)=(0.000/-4.444): 13.484[kip) - Coistpres L 3 Tension load il Load Nua[kip] Capacity On[kip] Utilization 11N=N3a/ N„ Status Steel Strength' 6.255 6.688 94 OK Bond Strength'" 12.510 12.540 100 OK i: •Concrete Breakout Strength" 12.510 13.648 92 OK anchor having the highest loading "anchor group(anchors in tension) 3.1 Steel Strength NO3 =ESR value refer to ICC-ES ESR-3187 j_i, 4i Ns ei?N„a ACI 318-08 Eq.(D-1) Variables e n .N[in.2] ft.[Psi] 1 0.14 72500 Calculations Ns,[kip] 10.290 x Results N.[kip] 4isteet 41 Nsa[kip] Nua[kiP) 10.290 0.650 6.688 6.255 i . i if I • i Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c}2003.2009 Hilti AG.FL-9494 Schaan Hiiii is a registered Trademark of Hite AG,Schaan MITI www.hilti.us Profis Anchor 2.4.7 r Company: Page: 3 Specifier: Project: Growing Up Greens Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 7/9/2014 1 E-Mail: 3.2 Bond Strength 1. ANa N09 -(V-c;)tyed,Na tlrg.Na tllec.Na Ipp.Na Nao ICC-ES AC308 Eq.(D-16b) 4,Na, a Nra ACI 318-08 Eq.(D-1) Arya =see ICC-ES AC308,Part D.5.3.7 I ANaO =Scr.Na ICC-ES AC308 Eq.(D-16c) Sv Na =20d T1450 k;0" 3 hef ICC-ES AC308 Eq.(D-16d) Ca,Na =s 2Na ICC-ES AC308 Eq.(D-16e) 440.1.1a =0.7+0.3(co----min 5 1.0 ICC-ES AC308 Eq.(D-16m) Ii c.-.Na s 0.5 Wo.Na =tllg,Na0+ [(—�-) .(1-yrg,Nao)]a•1.0 ICC-ES AC308 Eq.(D-16g) Scr.Na _ 1.5 tpg.Na0 =vn Pi- -1)• (_k,mc—) ]Z 1.0 ICC-ES AC308 Eq.(D-16h) Tax.c Tk,max.e=nk`d h ICC-ES AC308 Eq.(D-16i) 1 I. tVec,rya = (1 + 2eN 1<_1.0 ICC-ES AC3O8 Eq.(D-16j) Scr.Na yfp,Na =MAX( 'Ca min c«Cac J.Na\ 1.0 ICC-ES AC308 Eq.(D-16p) I Cac Nao =Tk.c'Kbond'n'd'het ICC-ES AC308 Eq.(0-16f) Variables Tkc.uea[psi] danchor[in.] her(in.) ca,,*,[in.] s„,9[in.] n 'rigs[psi] I 1880 0.500 7.008 a 7.000 2 1051 kc ff[psi) ec1.N[in.] eat,/[in.] co,[in.) Kbond 17 2500 0.000 0.000 11.890 1.00 Calculations sail.[in.] Ca,NS[in.] Afio[in.2] ANao[in.2] Weasel Tkmax[psi) 11.385 5.693 209.33 129.63 1.000 1432 Wg.Nao tpg,Na yrect.Na yfec2.Na tIIpNa Nao[kip] 1.154 1.033 1.000 1.000 1.000 11.563 I Results Nag[kip] +bona - i Nag[kip] N.[kit)] 19.292 0.650 12.540 12.510 1 1 I I I I Input data and results must be checked for agreement with the existing conditions and for plausibility' PROFIS Anchor(c)2003-2009 HAG AG.Ft.-9494 Schaan Hdti is a registered Trademark of Hilti AG.Schaan I■■III_-u-I www.hilti.us _ Profis Anchor 2.4.7 Company: Page: 4 Specifier: Project: Growing Up Greens Address: Sub-Project I Pos.No.: Phone I Fax: J Date: 7/9/2014 E-Mail: 3.3 Concrete Breakout Strength 1. ANC y Nctg = ( )tltec.N 1lred.N yrc.N Wpm Nb ACI 318-08 Eq.(D-5) NCB?Nua ACI 318-08 Eq.(D-1) ANC see ACI 318-08,Part D.5.2.1,Fig.RD.5.2.1(b) ANC0 =9 her ACI 318-08 Eq.(D-6) 1 IVec,N = (1 +2 eN)s 1.0 ACI 318-08 Eq.(D-9) 3 het yed.N =0.7+0.3(1 Shet) 1.0 ACI 318-08 Eq.(D-11) IyopN =MAX(Ci ec C 1.5het)<1.0 ACI 318-08 Eq.(D-13) Cac Nb =ke A Nirg h@i ACI 318-08 Eq.(D-7) Variables her lin.] ect,N[in.J ec,N[in.1 • Ca,mn[in.] lyc.N 7.008 0.000 – 0.000 1.000 i cac[in.] kc x 4[psi) 11 890 17 1 2500 Calculations ANC[in.2J Auce(in.2J yrecf,N 111ec2,N ryed,N gicp.N Nb[kipl 588.29 441.25 1.000 1.000 1.000 1.000 15.749 Results Nag(kip] 4ieonerete 4 Nob,(kip] Nua(kip] 20.997 0.650 13.648 12.510 I I, i I I I .-,..::',: • F q low Input data and results must be checked for agreement with the existing conditions and for plausibility! s{ PROFIS Anchor(c)2003-2009 Hilb AG.FL•9494 Scheer) Hilti is a registered Trademark of Hilt AG.Sehaan I: 1■41`.TI www.hilti.us Profis Anchor 2.4.7 Company: Page: 5 Specifier: Project Growing Up Greens Address: Sub-Project I Pos.No: ' Phone I Fax: ] Date: 7/9/2014 E-Mail: 4 Shear load Load V,.[kip] Capacitykn[kip] Utilization pv=Vua/aVn Status , Steel Strength* 0.470 3.705 13 OK Steel failure(with lever arm)*- N/A N/A N/A N/A Pryout Strength(Concrete Breakout 1.880 39.192 5 OK Strength controls)"' Concrete edge failure in direction"' N/A N/A N/A N/A "anchor having the highest loading "anchor group(relevant anchors) 4.1 Steel Strength V. =(n 0.6 Ase.v feta) refer to 1CC-ES ESR-3187 4>Vsteel?V. ACI 318-08 Eq.(D-2) Variables 1 n Ase.v[in.2] feta[psi] (n 0.6 Ase.v fma)(kip) 1 0.14 72500 6.175 Calculations V.(kip] 6.175 Results V.[kip] 4>steel 4)V.(kip] Vua(kiP]- 6.175 0.600 3.705 0.470 4.2 Pryout Strength(Concrete Breakout Strength controls) Vcpg =kro[(ANco)grec.N tyed.N tye.N wee.N Nbl ACI 318-08 Eq.(D-31) 4,Vpg c ?Vua J ACI 318-08 Eq.(D-2) ANC see ACI 318-08.Part 0.5.2.1,Fig.R0.5.2.1(b) ANcg =9 he> ACI 318-08 Eq.(D-6) 1 tyec.N = 1 +2 eN)S_1.0 ACI 318-08 Eq.(D-9) 3 her/ yred.N =0.7+0.3(c5ha mme1)5 1.0 ACI 318-08 Eq.(D-1 1) 1 tye,N =MAX(ca—rnn 1.5hef)5 1.0 - ACI 318-08 Eq.(D-13) Cac � lac Nb =kc A<her5 ACI 318-08 Eq.(D-7) 1 Variables kcp net(in.] ec,.N[in.] ec2.N[in.] casein[in.] ' 2 7.008 0.000 0.000 y'C.N cac[In.] kc A. fc[psi] 1.000 11.890 17 1 2500 Calculations • ANC(in.2] ANc0(in.2] Went.N y,ec2.N _ Iyed.N ylcp.N Nb[kip] 784.33 441.25 1.000 1.000 1.000 1.000 15.749 Results Vey[kip] +concrete •V,yg[kip] Vua[kip] 55.988 0.700 39.192 1.880 — 5 Combined tension and shear loads I pN ]sv Utilization 3>v['/e) Status 0.998 0 127 1.000 94 OK pNv=(6N+pv)/1.2<=1 input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)20052009 KM AG.FL-9494 Schaan Hai is a registered Trademark of Hilt AG.Schaan III FII`T1 II www.hilti.us _ _ Profis Anchor 2.4.7 Company: Page. 6 Specifier: Project. Growing Up Greens Address: Sub-Project I Pos.No.: Phone I Fax: i Date: 7/9/2014 E-Mail: 6 Warnings 1111 • Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered.The anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the loading! • Condition A applies when supplementary reinforcement is used The 41 factor is increased for non-steel Design Strengths except Pullout i Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions • The ACI 318-08 version of the software does not account for adhesive anchor special design provisions corresponding to overhead f applications. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! Fastening meets the design criteria! I ii.1 i I: I if i . . I I 1 I I II . Input data and results must be checked for agreement with the existing conditions and for plausibility. } PROFIS Anchor(c)2003-2009 Hllb AG,FL•9494 Schaan H ih is a registered Trademark of H tb AG.Schaan 1 ■■IIli ,1-1 ,, ... www.hilti.us Profis Anchor 2.4.7 rp Company: Page: 7 Specifier Project: Growing Up Greens Address: Sub-Project I Pos.No.: ` Phone I Fax: I Date: 7/9/2014 E-Mail: ! 7 Installation data Anchor plate,steel:- Anchor type and diameter:HIT-HY 200+HAS 1/2 IL Profile:Rectangular HSS(AISC);6.000 x 4.000 x 0.125 in. Installation torque:0.030 ft.kip Hole diameter in the fixture:d, 0.563 in. Hole diameter in the base material:0.563 in. Plate thickness(input):0.750 in. Hole depth in the base material: 7.008 in. Recommended plate thickness:not calculated Minimum thickness of the base material:8.258 in. l i Cleaning:Premium cleaning of the drilled hole is required T y 5.000 5.000 — •- -•- 1. 0 0 to 0 3 Q4 •. 0 °o 8 I I i° , -- _ - 0 0 0 u; I. 01 Q2 - 0 0 1.500 7.000 1.500 Coordinates Anchor in. I Anchor x y t.x c„ c-y c.y 1 -3.500 -3.500 - - - - 2 3.500 -3.500 - - - • - 3 -3.500 3.500 - - - - 4 3.500 3.500 - - - - Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG.FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan II wtnrvv.hilti.us Profis Anchor 2.4.7 s Company: — ------ Page: 8 Specifier: Project: 1 Growing Up Greens Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 7/9/2014 E-Mail: 8 Remarks; Your Cooperation Duties Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc..that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be rput in by you.Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you I , i I I I • li I i r I I . Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003.2009 Hulk AG,FL-9494 Schaan Hilti is a registered Trademark of Hiltl AG,Schaan IT • 7