Loading...
609 Camelia � I I �zl �b .I UNIFORM LOAD UNIFORM LOAD Table 3A•1.1.110 Allowable Edge Beam Spans-Hollow Extrusions Tabk 3A t 1-130 Allowable Edge Beam Spans Hollow Extrusions for Screen,Acrylic or Vinyl Rooms for Se nyl Rooms I. For 3 second wind gust at 110 MPH velocity;using design load of 11 9/SF(36 X/SF for Max.Cantilever) For 3 secoml wind gu -MPH vel ty;u Ing design load of 15 NISF(50 x/SF for Max.Cantilever) Aluminum 6063 T. i - I 2"xz-0 ^6063 T-6 2"x2'x 0.055' 7x2"x0.044 Yx Tx0.p 5' --�1`- LOW Max.S n'L'I bendln b'or dellection'tl Load Max. ant'!bendln bi on tleflection' Spa ( 9 _7 D ( 9 Load Max.Span 1'/(bendingb'or de}kc6on'd� Load Max.Span•L•l(bendl g'D'or deflectton' i a i pan 3 Span 4 Span 1 a 2 3 Span 4 Span ( 1Max. Width(R) Mas I ylrldtit�') 1 i 2 3 Cantiisvar Width(M-) span P P �' Width tt 1 d 2 S 3 Span 4 5 n 7 a 2 5 3 s Candleva W 4 S A B A B Cantilever Pm Pan Candiever S 5'4' d 6-r d F-r d 1'-7' d S 5'-8' d I F-11' d T-1' d 1'-r d 5 4'-10• d 6-11' d Far b 7-11• d 5 5-1• d 6.4• d 6-S d liar d 6 5'ar d 6-r d W4• d 1'-0' - d 6 5'4' d 6-T d Gal' d 1'1' d S a - INGLE SPAN CANTILEVER 4•$ d •-r - 1 1 0 s e s$ r i; i II R SINGLE SPAN b 7 1 d 6 1.1a d s 1r a Farb a n• d # 7 4'4r 0 5'-Il" d S-1T b 0'41' d 7 5'-1• tl 6-3' d Gam' of 1'-0• d i,'• t 4'-T d 5$ d 5-T b 0'-1 t• d 6 4'•10' d 5'-11' d 6'-1' b 0'41' d 0 1'-1' 0 4'-11' D 4'-g* b 7-10' d I 4'4• d 5'-S d 5'-3' b V-10 d 7 t'4' d S-3' b 5-1' D 0'-10' d 7 4'-T d 5$ d 5-T b C-11' d ' 9 4'-5• d S-S d S-3• b 0-10' d 9 4'-6• d 5'-9' d F-9' b 0-it• d 9 3'-11' d 4'-0• b 4'$ b V-9• d 9 4'-r d 5'-1' b CAI' b 0•-10' d UNIFORM LOAD UNIFORM LOAD 10 4'-3' d T-r b 4'-11' b 0'•10' d to 4'-6• d S$ d 5'-S b W-it' d 10 3'-10' d 4'-5' 6 4•-3' D 0'-9' d 10 4•-1' 0 4'-10' 6 4'$" b V-10' d 11 4'-1' d W-11- b 4'-r b 0'-10' d 11 /'4' d 54' d 6-2" b 7-10• d 11 3'$ d 4'3• D 4'-i' D 7-r d f1 3'-i t' d 4'-r b 4'-S b 0'- r d li 12 T-1 t• d 4'$ b 4'-T b 7-10' d 12 4'3• d 5'-r b 4•-11' b a-ur d 12 3'-r d 4'aY b 3'-1P b 7-9" d 12 T-10• d 4'-S Q 4'-3' 6 7-1 d 43 a x wusl, 3•x2"x0.070' 3 x x0. 3-x r x 0.070 Lod Max. 'L'/batdin b'or detlec0on' Load Max.Bpan'L'!Dertdf 'b'or denaetion' Load Max.S n 1•I(ben b'or deflac0on' Load Mas S n t'I ' 1 t 4 i i l Max. panda 1 S�ardofieetlon' Width(f) t a t Spm 3 span 4 Span Cantilever Width(n)t a t Span 3 Span 1 span Cantilever. (R) 1 a 2 spa 3 span 4 span Cantilever Width(h)t i t s 3 CaMlwa A B C A B C D s bar d r-5 d r-r d 1'-r d 5 6-r d 6-5• d W-r d T4' d s s-5 d 6-r d 6-10er r-r d s 64- d r•r d rat• d r-3• a rid 2 SPAN 3 SPAN I 5$ tl Td d T-T d i'-r d 6 6•-5• d r-11' d Far d 1'-3' d 5 S-P d 64' d F-Y d 1•4r d 6 Sar d -r-l' d r r d 1'-r d e s-r d 64• d Wei d T-0' d 9 s4o' d r-r d r4• d 1=r d a 4•$ d s-r d saT b o4r d e Sr d 6s' d 6-r d T$ d 7 s-5 d 6$ d 6-10' d 1•-r d 7 6'-1- d lis d r-• d T-r d 7 a-1o' d 6.0' d 6n• b a-11• d 7 s$ d6-r a 6-11• d r-r d 9 4'-11' d 6-2' d 6J' d 0'-1T d 9 5•-T d 6-11' d T-0• d 1'-t• d 9 4'$ d F-W d S-S b W-11' d 9 S-T d 6-3• d 6.4' d 0•-11• d UNIFORM LOAD 70 1'-9' d 5-11• d S'-1P D Q-i t' d 10 5'-S d 6-B" d 6$ d i'-1• d 10 4'-1• d S-3' D S-1• b 0-10- d 10 C-70' d 5-17• d 6-t' b 0'-i i' d J #}I t1 4'-6' d SA' d 5-a' b a-ir a 11 5'-3' d 6-5' d 6-T d 1'-0' d 1'-r d S-1• b W-11' b 0'-10' d 11 4•$ d S-10' d LITE-1b W_/' 0 x 1x0. 4$ d 5'-r d SS b 0'•11' d 12 5--1- d 6'-3' d 6'-S d 1'4• d Z x x -1' d 4'-10• 6 C_r b V-10• d 12 4'-r d 5.4r d D 0'-1Y d x -x 0.050' x t 9. Z I' 9.0550- Load Mas n'L'/(Den b'w dellec6on'Q') load Mu.Span 1'I(Mnding b'or dofleeaon•d) Mas 1'I b'or donaetlon' Load M. n t'/(bending b'or defNclion'd' c t i i i i Width�') t i 2 span 3 span 4 Span u' Wi/Ifn ')1 a 2 span 3 span 4 span ' WIdM(a-) 1 a 2 3 5 4 'tr• Width(IL) Max, c a W r Cannkwr Cantnaver Pan Spm Cmb-»ter 1 a 2 S 3 Span 4 Span Cantilever 0 th i7 t= A B (�` D E 5 T$ d 9'-3• 0 W-S 0 1'$ d S 9'$ 0 11'-11•d 7T-r b 1'-11' d - 0 0'-4' d C-r b 1'-4' d S 6-r d 10'-9' b 10'-S b T-r d 0 Z O .I 6 Tar d W$ d F$ b 1•-5' d 5 9'-1' d 113• d IVA' b 1'-10• d7-6--j- F4' T$ b r-S b T-3• d 6 6.3• d 9•-10• b 9'$ D 1'-I' d _� U 4 SPAN - 7 F$ d W3• d W-P b 1•4• d 7 6-6' d 17$ b 17-3- b t'-r d 7 d T-T b 6-1 i' b T-T d 7 T-10• d 9'•1• b 8'-to' b 1'-r d Z UJ dz li l li 6 6-S d TA' b T-S' D 1'-3• d e 8'-3• d 9'-i t' 0 9•-T D t'-6• d I S-r d 6-0' b 6•S b 1'-r d a T$ d 6$ b 6-3• b t'-6• d Z (jJ Z J S. ' NOTES 10 5'- d 6 1• b 8'-r D 1'7 d 0 rat• d W-1 b 8'-r b t'a'i' d D SX D S b S-r D 1-1' 0 10 6'-10• D T T b T4' D 1=S d > to Q t 1)1-Span Length 11 5-r d 6'-K b 6-S b 1'-T d 11 T-5' d 8 N D F-T b 1'ai d 11 S-P b Sar b S$ b i'aY d tt 6ai- D T-3' b TaY D 1'4- d U.I W Q x' 6 a Overhang Length 12 S-T d 6.4• D 6-T b t'-i' d 12 T3' d 6.1' b r--;Ir b 1'-5' d 1I 4'-1P b S-5' b S3' D P-11' d 12 63- b 6-11• b 6-r b 1,4-to U m M 2)AN spans listed in the tables are for equally spaced distances between supports or anchor pokft ►�: Nan: D 3)Hollow extrusions shag not be spliced. 1.Above spans do not include length d knee Dace.Add hortronbl detente from upright b center d brace b beam t.Above spins do not ixdrt�length d knee Drax.Add horizontal distaste lean upright b center d brace b beam } I- Q C5 Z 4) Single span beams shah only be spliced at the quarter points and splices SW be staggered. 2-spas,try beabovespanInterpolated. ca nectia+ro me aurora spans for tow beam spans. � U � N O tervrction b the above spans for lbw beam spans. 2.Som may be interpolated. �- F- ,'I IU �I Q U Q O t SPAN EXAMPLES FOR SECTION 3 TABLES Z 0) U_ N SCALE: N.T.S. Table 3A 1.1-120 Allowable Ed m Spans•Hollow Extrusions Table 3A.1.1-140A Allowable Edge Beam Spans-Hollow Extrusions UW( � O o s for Screen,Acrylic or Vinyl Rooms Z_ N s For 3 second wl ust at 120 MPH Velocity- sing design bad of 13 AYSF(43 NSF for Max.Cantilever) For 3 second wind gust at 140A MPN velocity;using design bad of 1711/SF{58#tJSF for Max.Cantilever) (•) Aluminum W63 T4 3'L r x z-x o a4- Ammintar ABoy sa67 Talco l ( ) r x r x o.oss 2-x x 0.0u x . D(2 85(256•L) lyidet(n.) Max-) Widen Dan t'1(bending'b'or denection'd') Load ebx.span t'I(bends W or deMc6on' Load Max.S s Load Mas Span V I(bending W or denae0on'd' Load Nay S pan 1'/ b'or deneotlon'd1 J t i 2 Span 3 Span 4 Span CaMilwer �') a 2 Spm 3 Span 1 Span Cant lever �h(R)1 a 2 7 Span 4S- CaMllewrwidth )1 a 2 spa 3 Span 4 Span Cantilever a ( ) S 5-1• d 6-3• 0 6�• d liar' d 5 5'1' d 6-T d 6-r d t•-t• d S 4'-r d Tor d S$ b a-11' d S V-11' d W-V d F-r d 0'-11• d l C 1 171/256"L 6 4'-r d V-10' d 5-11' b V-11• d 6 5'-T d 6J- d 64• d 74r d 6 V-4* d S-4' b 5-r b 0'-10' d 6 4'-T d S-6' d S-8' b 0-11• d A(171/256'L) B(1 t15I258'L t 4'4' d S4• b 5'-1• b 7-10' d 6 4'T d S$ d S T b 0'•11• d e 3'-71' d 4'$ b 4'$ D 7A' d e 4'-r d 5-t' b 4'--131•• b 0740• d W 2 9 1'-r d 5.11' D 4'-10' b 7-10' d 9 4'-S d S-S 0 5'-3' D 7-10' 0 9 Fur d 4'4- b 4.3• b 7-r d ! 4'ar d 4'-9• D 4'-T b d-r d 10 4'aY d r-r b W-T b T-10- d 10 4'-3• d S-r b 5'-0- b V-1p- d 10 3'-S d 4•-T b 4'-0- b 0'-r 0 10 3'-11' d 1'ai b 4'-5' b 7-9' d LL j j 71 3'-1P d 4'$ b 1'4• 0 7-9' d 71 4'-1• d 4'-7T D 1'-r b 0'-10' d 11 3'-6' b 3'-11' b 3'-10' b O$ d 11 37-r d 4'-4' b 4•-2- b 0'-r d LL 3 x12 s 0 3'-9' 0 44' b 1'-r b 7-r d 3 x7Y x 0.0 0 11' d 4'-r D /'-T b 0'-10' d 12 T-S b Tai' D 7$ b p'$ d 12 3'-W d 4'-2' D 3'-11' b V-r d �+ U 3 x2-x0.04 : x0.00 Y ql' ALLOWABLE BEAM SPLICE LOCATIONS Lone Nays 1•!(bend W or danection•d) Load Max.Span t•l(bens •D•or aetketfon d• Load Max-span t•/ - b•orde •d• Load Max.span 1•!(bendin b•or datketbn C Z t-m�+ I� SCALE: N.T.S. Width(ft-) 1 a 2 Span 3 Span 4 Span CaMOiver WNMh ) L 2 Span 3 span 4 Span Mu. WfdtA(K')1 a 2 3 4 x. Width PL) Mas C W>P. Cantltever Span Span Cantilever 1 a 2 3 Span 4 Span Grdiiwer S 5•$ d r-1' d r-r d 1'- N to o m SINGLE SPAN BEAM SPLICE d=HEIGHT OF BEAM r d 5 6'-S d T-71' d W-1' d 1'3' d S S-3' d F-5' d 6`4 d i'ar d S 5-10• d T-3• d T-S d t'-Y d 1/4 POINT OF BEAM SPAN BEAM SPLICE SHALL BE 6 5'4• d F$ d 6-9• d l'-7' d 6 6'ar d T3 d T-r d i•-r d 6 4'-11• d 6-1' d 6-r d 0'-iT d 6 5'$ d 6-10 d 6'-11^ d Y-t' d m W "ql Bi f ALL SPLICES SHALL BE MINIMUM d-.50• 7 S-1• d 64' d 6-5' d T-0' d 7 5'-r d T•!• d r-3• d t'-r 0 7 4'af" d S-r d S'-r D P-11' d 7 S3- d 6af• d 6-7• d 14)- d �k ��u O Z W_ 6 W-11' d Far d 6•r b V-11• d a 5'aP d W-r d F-11• d 1'-1' d • 4'-6' d S-0- d S4• b Q•11• d a Sar d V-2• d 6'4- d a-11• d W J O N O '.. STAGGERED ON EACH �(c-d--Sl)' d--51)• 1•MAX- f 4'$ d 5-10' d S-9' b CL 0'-11' d 9 5'-3' 0 6ai d bar d 1'-1• d 9 4'-3' d SJ' D S-1' b d-10' d ! 4'•10' d S-ti' d 6'aY b 0'•71• d Q� u- �' ,0 X SIDE OF SELF MATING BEAM I 10 4'$ d S-T d S$ b W-it• d 10 5'-1' d 6'-3- d 6'-5• d liar d 10 4'-r d 4'-11• b 4'-10' b V-10' d 10 4'4' d 5'-r d F-9' b W-/1' d U 1XW PLATE TO BE SAME 7 + + + + + + + 11 r-S d S-5• b S•3' b 744 d 11 4'-tY d 6'-1• d 6'-3- d 0'-11' d it 1'-0' d 4'•r b 4-r b Q-r d 11 4'$ d S-r d 5-S b 0'-11' d C lirTHICKNESS AS BEAM WEB Sp„ d Yx2 x - 4-3' d S-T b Sar b 7-10' d 12 1-r d F-11' d 5-11• b 0'41• d 12 3'-11' d W-r b 4'•S b 7$ d 12 4'-5• d 5-5- b 5-3- b 7-10• d Q� PLATE CAN BE INSIDE OR r a 4 :o.oso r x x 0. x 4 x o.0 W m "7 + + + + + + + Load Max.Span t'/(bending b•or deflection•d j Lod Max.Span 1'/ 'b'or deflection' Load Max.Span 1'/(bends b'or deMclion-in Load Mas n t'1 b'or dAleetbn -+O OUTSIDE BEAM OR LAP CUT Width ) 1&2 Span 3 Span 4 Spm Cantnwer Width(h.)i a 2 Span 3 Span 4 Span Cantilever Wirth(n')1 a 2 S 3 Span 4 Span Cantilever Width(R)1 i 2 3 Spar 4 Span CaMax. J a DENOTES SCREW PATTERN 1-MAX. S T-T d W-r d W-r D 1'-S d S r-T d 11'-4' d 11•-r b 1'-f0' 0 S 6$ d T-i 1' b T$ D 1'3' d S F-S d 17-t' D r-9' b 1'$ d NOT NUMBER OF SCREWS (� 6 6$ d F-3' d T•11' b 14- d 6 8'ar d 17-r b 17-3• b 1'-r d 6 F-1• d T-3' D 6-1Y b 1•-r d I r-11' d FT b 6-11' D 1'-r d HEIGHT 2 x(d-50')LENGTH 7 64• d Tar b T-S b 1'•3• d 7 e,-r d 7-r b 9'-S b 1'$ d 7 S'-r d 6a1' D F$ D 1'-r tl 7 T$ d 6-T D 6-3' b 1'$ d e 64• d r-r b F-1r b 1••r d a r-10' d r-r b F-1o• b t•-r d e SAr d F-r b 6-1• b T-t• d I T-r b War b r4r b lis d f 5-10' d F-9' b 6$ b 1'-T d ! rte• d 8'$ D W4' D 1'$ 0 9 5'-r b 5-11' b SS b 1'-1' d 9 FA• b T-r b T4' b 1•-4• d t r MlrtUrnrrrrt Distance and of Senors d W-5 b F-r b 1'•P d 1D r3• d F-T b r-1 P b 1'-5• d 10 Sar b S-T b 5$ b 1% d 10 6$ b r- -11' (I Y b 6 D 1'4' d Screw Strs t To Carta Certbr Te C~ Gusset►bb Thickness it SS• d 6-T b 5-11• b 1'-P 0 11 F-it' b r.IV b r-r b 1'-5' 0 11 4'-r b S-4• b S•r D 7.11• d 11 64Y b 6-10' b V-r b 1'-3' d (iri, 2-1/2ds F. tiomtSM TMdcnw 12 5-3' b 5-10' D S$ b 1'4• d 12 bar b Tai b r-3• b 1'4^ d 12 4'-r b 5-1• b 4'-i t' b 0-11' d 1I -1T b 6$ D 64' D 1'3• d a8 0.16 3/6 7/16 r x T x 0.055 x 0.120'•' 11116" 0.063' Notes: Nota: P O �j MO 0.19 3Po 112 r a lC x 0.07r x 0.220 116•a 0.125 1.Above Spans do not include length of knee brace.Add horizontal distance from upright to center of beats to boom 1-Above spar$do not kck de length of knee brace.Add hormones distance from upright to center of brae b beam E connection b the above spans for tow beam 612 02t I„6 9/16 r x ir x 0.07r x 022,r lAr-0.12V connection to the above spans 516 r x Y x 0.06$x 0..308' 1!6'a O.t25• 2-spans may be edeepolated,f a tow beam 2. Spans may be Interpolated. L spans- spent f14 a Illi o2S 1n s f 5/78• 0.313 5/9 314 r x to,x o.Dor x 0.3�• 7th••025 ` Ref ss to each aids of spite. 'I ~tAefarxrrWrx6'abo HEET Nob. I-All gusset pores N+a6 be a mYirmm 5052 H-32 Aloy or have a mir*ran yield of 23 ksL Ir 1) TYPICAL BEAM SPLICE DETAIL i SCALE: 1'=1' err i 07 ofi zoos OF S It Table 3A.1.3-110 Allowable Beam-Spans for Miscellaneous Framing Beams for Screen,Acrylic or Vinyl Rooms Table 3A.1.3-140A Allowable Beam Spans for Miscellaneous Framing Beams for for Screen,Acrylic or Vinyl Rooms , For 3 second wind gust at 110 MPH velocity;using design load of 11 NSF For 3 second wind gust at 140A MPH velocity;using design bad of 17 NSF Aluminum Alloy 6063 Ta Aluminum Alloy 6063 T-0 Hollow and Tri Load Width Hollow and TribuIs load Width '.. Singh Sale-Mating Beams r4' I r-0' 3•-57 I 4,4' 4'i' S-0" S4" 6'-0" I 6'$ r-0" T4' r-0' Single Self-Mating Beams rfi' 1 X-V 1 r$ I 4•-r W-1' S•0" S'3' r-1' I V r T-0" r$• r$' - AllowableSpanVjbonJingVer de6eetbn'tr - Allowable S n'V I Ing V or deBection'd - - 2"x r x 0.050'Hollow 17-r d 11'$it 10-it'd 1015 it 19.0"d 9$ d 9'-5' d 0'-1• it 6•-11•it 6'-S• it 6'$ d 8-3• d 2"x r x 0.050'Hollow yr-r it 7-12'd 7-5' d 914r d B'$ it r$ di r-Y d T-il"d r4r d T$ d r-0' it I T-r b 2'x 4 x O.O6r Hollow 155 it 14'40'd 14'•1'it 13$di 1T-11'd 12$d 17-1'it 11'•9•d ITS d 11•-2'it 10-11'd 10'-6'it r x r x 0.050"Hollow 13•-7'it 17-10"d 17-r it 11'49 it tt'-r d 1046 it 10$d it-r d r-12'it 7-6' it 7-5' it rd' d Y x 4'x 0.044'z 0.100' 13'-6'd 17-10'it 17,2.0 11'4r d f t'-T tl t1'-ton d 10'-6'd to-r d 9-11•it r$ 0 7S d 9-3' it r x C x 0.044"x 0.100" 11'-0'it 11'-1'd lig•$d 10-4-it 9'$ d g-C 0 9•-1- d r•10'd r-T d 574" d V.r d r4' d 2"x 5"x 0.050'x 0.100' IV-11'd 15-11'd 15-1"it U'-S'it 13'•11'd 13-5 d 1Z-11'd 17-r d 17-T d IV-11'd it'-9•d 11'49•it r x 4 x 0.0sr x 0.100' 14'-r d try d 13-i•d 17r it 174 d 11•-r It I I%r d 10-11'd 1017 it 101-4'd 10-r it 9-11'd - 2'x r x 0.050"x 0.120" 17-V d it-r it iT$it IF-11•d 1573 d 155 it 15'-2•it 14'-9"0 W-T d W-V d 11-V d t1'-S it 2'x r x 0.050'x 0.120' 17'-1"it t1'-1'd IT-7 it 14•-r d 14'-1•d IT-r d IT-r it tT-r d 175 d 1T-7 d 11'-ur d t1'-7-d 2'x r x 0.055'x 0.120' 2Z$it 21'-r it 2r-r d tri'it t1'$d 1T-16 d Ir-r d IVAO'd 11'-5 it 15--1 i-d 15-r d 15.3 it 2"x r x 0.055'x 0.120" 19$it tr4•it IT-S it 1r4r it 157.0•it 15'-6•it W-12'd 14'-r d 14'-2*d 13-10 it /3$it 13.3•d r x r x 0.055'w/insert 2r-r d 2Y-'r it 244'it 23-3-d 274•d 21••r d 20-11'd 2174•d 195 d 194'it 157.1fr d t1'$it r x r x 0.055'w!insert 27-6'd 27-r d 21'4 d 20•-i•it I W4*d /r$it IV-I'it 1r-r d 1T-1'd lir$d 1574'it 15-t Y d 2'x r•x 0.07r x 0224" ZT-t Y d 25-57 d 24'-11'd 257-10'it 2T-t Y d 27-2'it 21'-S d 20'-10•d 20'-4'it I9`1I V d 191-C d IV-11'd r x r x O.OTr x 0.224" 24'-r d 22-g•d 21'-r d 2V-r d 19-10•d 19'-2*it 11'-r it fro d 17'-T d iT-Y it ir-0'it IV-$'d Y x 9-x 0.0757 x o224- 30-r d I 28-10 d 2rd'it 257-r it 251-2*ill 24'-4'it I 23'-r d 27-10-it 22'-3'd 21'-9•d 21'-3'd 20'-9•d Y x 9'x OZ z 0224' 257$d 24'.1:1:d 23'$tl 27d d 21'f ol 21'4 d 2U-4"d '9 V d 19'-3•d 157-9'0 157-0'd tT-11•d Y s 9'x 0.062'x 0.701' 31'-9'd 2g'-10'd 2574•d ZT-T d 257-1'd 25-7 d 24'-S d 257$.d 23'-t'd 22$d Z24 d 21'-5 d Y x Y x It x 0.306- 2TS d 25-#0'd 2C$tl 23'-0•d 27-r it 21'-ir d 21'-1'd 2V$d 17-11'd 1744 d /574 d 157.5 d r x 16 x 0.092'x 0.360' 1 3V-2'd 35-11'it 34'4•it 1 3746'it 31'5 it I 304'ill 274'd 29-V it I 27.9•ill 2T-0•it I 257$it I 25.11-it 2"x 10'x O.Ogr x 0.369" I 3574 d 31'-1'it I 29$d I 28-3"d I 27"-r o I 2V-r it 1 25.5•it I 2C-r d I 244 tl I 2575 d I 2741'0 27-5 d Tdbuq Load Wldlh Tdtlute Lord Width Double Self-Mating Beams 5757 575 1'a' 1'-0' Ci' Sr rr rr r-c r1' Ti" 5757 Double Ss0-Mafhq Beams 7.6' 3'-0' 1'i' /'-0' 1'-0' S-0' S$' r-0' 6'-6' T-0' Ti^ r-0' Allowable Span VIbenfingWordelloctioWir Allowable Steen V/banding V or deflection'd 2'x r x 0.0757 x 0221" --3:g 33'-t'd 31'5 it W-1'd 28-11'd 2r-it'd ZT4 0 257-3'0 2S-T o 24'-1 2'0 24'-S d 257-10•d r x 6'x a 07 x 0224- 3oS tl 257-r d 2T-r a V-11-id,24'-11'd 21'-2'd 23'5 d 27$0 27:1 d 21'-T d 21•-Y d 2W-r d Y x Y x 0.0757 x 0221' 357-T tl 36'4'tl 34'$0 37-1 Y d 34'-5 tl 30'-T d 29'$d 257-10'd 28-1'tl 274'd 26'-9'd 26'-7 d r x r x o.o7r x 02:4' 3574'd 31'-5'd 257-t0'd Z57$0 2TS d 24 0 25'$d 21'-t Y d 21'3'Il 257.8'0 257,2'd Tl$d Y x 6 x 0.06r x 0.306" 41'-t'd 357$d 357$tl 3S-Y d 37-V d 37-T d 31'-r d 30'$tl I 24-1g•ill 27-1.ill 257$it I 27'-1(r a 2"x Y x c.06r x 0.306' 35'-6'd I 357$d I 31'-r tl I 3O-4'it I 2g-r d I 257-2*it I 2T4•d 1 257$d I 2S-IV it I 25-7 i24!.7"d 24'-1'd r x/6 x 0.092'x 0.369' 457-Y d 453 d 4r-11•d 41'-1'a 37-b'd 357.2 tl 38-1 Y d 3•-11'd 1 34'-1 Y it 1 34'•1`tl 1 374-61 3Z-r it 1'x 10"x 0.092•'x 0.362' 41'-T ill 39-7 it I 3T-7 it I 36-r it I 34'-2'it I 3574 ill 3V-11*01 31'-1'dj 30'-3.ill 271'0 2r-10•d 257-3'd J Note. Nob: Q 1.his reeormmondsd that the engineer be oorrulbd on any misw6anaous Imnli beam Ort spansmore lion 40 1.It is recommended that the engineer be consulted m any miscellaneous Ir iep beam gut spans more 9rn 40 D 2.Spero we based on 110 M.P.H.wind IoW plus dead bad for framing. 2.Spans ars based on 140A M.P.H.wind bad plus dead bad for training. CO Z 3. Span Is measured from center of cerenacDon b hide or wet aorsrcibn. 3.Span is measured from connection of carction b facia or win mnrn.ctio 4.Above spans do nb riot include ngn gr of bre bra .Add horizontal dissnce from upright to ceder d brace to beam comedian to to above spas for total 4.Above spans do not includebrglh of Visa'- Add horixonlai distance from upright b tenor b b fin of brace bean correcion above spam for bed W 0 beam spans. beam spans. 5.Spas may W kxerpoleted. 5.Spans maybe interpolated. CO f2' U U Table 3A.1.3-120 Allowable Beam Spans for Miscellaneous Framing':Beams for Screen,Acrylic or Vinyl Rooms } ) For 3 second wind gust at 120 MPH velocity;using design load of 13 NSF. Z U1 Z 0 CO Aluminum Alloy 6063 Ta Table 3A.1.4-110 Allowable Spans for Ridge Beams with Self Mating Beams Table 3A.1.4.140A Allowable Spans for Ridge Beams with Self Mating Beams 5 8 t= Q Hollow and T U)ad width for Screen,Acrylic or Vinyl Rooms for Screen,Acrylic or Vinyl Rooms J 0 I— Single son-Mating Beam 2•r TV 1'r rtf Cr r-0" sr rr Fie- r-w r•6' a•-0' guy velocity,using design load of 11#ISF For 3 second wind gust at 148A MPH velocity;using design load of 17 NSF eB LU W For 3 second wind tat 110 MPH ve Q ANowabla V I hemi V a defteetlon'd U m eQ 1573 2's S x OAb'2'Hollow W-1 1'0 14'4 0 1574•d 175 d 12'3 d / -16 d 761'5 d 161•'t ala-to'd 10-7'd 10'4'0 10'�d Self Mating Saetbns Sr 5757 Try LoSndtlh Yr 10-0' 11'57 1757 Sett Mating Sen:lbns S4 5757 Tr l.wa 1Mmetn Y Purhh St9r it`d' 17457 J Q v Z 1'i 4"x OA4r x 0.100' 12-11 d 12 2 d 11'$d 11'4 d 10-r d 10-3'd 9-1 t'd 9$ d 9-S d 9-Y d r-t t'a 8-9 d Allowable Span•L•I Bernd W or deflection V Allowable L/be V or deflection d U O N O r x 4 x OA50•x 0.100' 15-i l•d 154 d 14'-3'd 13$d 13-r d 12'4'd 17-7 d 11'-it'd 17'-T a 17'4'd 11'-1'd 10-10 d r x 4"x 0.044 x 0.100" 1C$ d I T-W D 17$ bJ24r-V 11'4 b t0-S b 9-11* D r$ b Y x 4'x O.O"x g.10r 11•-11• b 10-10• b 704 b 9'-5 b 6'-10' b BS b 574 b T1• b U = } ~ r x r x 0.050"x 0.126 ter d iT-r d 157-0'd 15-11'd 154•d 14'-t0 d 14'-r d 17-11•d 13'-T d 157.3•d 17-11'd 17$d 2'x S•x 0.050'x 0.100' iT-11' d 157$ b iS-V b IY-r b 17-t2' b 124• b 71'-9• b 1'x S'x 0.050'x 0.180' 14'-6' b 17.5 b /7S b 1 T.T b 10-12' b 10•-S D 9.11' b 9$ b Q � � � W r x r x 0.054 x 0.120' 21'-4'd 20-1'd 194 d ir3 d iTr d 16•-11•d irS d 15-it'd 15$d IV.1-d 14'-9•d W-V d 2"x 6'x 0.050'x 0.120' 21'-0` d 19.3• b lr.IV b IT4* b 14'-t2' b 14'3 b 1574• b r x r x 0.0$0'x 9.120' IV-11' b 1S$ b 14'4' b 17-V b 17$ b 174 b 11'$ D 10-N' b Z CO) r x r x 0.054 w/insert 25.9'd 2C-r o 27-M 0 274 d 21'-r d 205 d 17-V d 19-3'd M5 d 16'3 d 17-10'd /T1•d r x r x 0.055 x O.iZr 23.9' b 21'5 D 20•f' b 1T-9 b it-10' D ir4 b IF-C b r x r x O.OW x#A2r 19-Z' D 1T$ b 1r-r b 19-r b 14'3 b t1'$ b 17-11' b 174• b LU r x r x 0.07r x 0221' 26'5 d 24'-1G o 23'-7-d 27-r d 21'$d 2l1'-t Y d 204'd 195 d 19-r d IV-9`0 157.4-d 1T-11'd 2-x r x 0.055 vel bled 2V-i V d 2T-3• 0 25-11• d 27-r b 275 D 214' b 205 b r xr x 0.055'vel Insert 254 d 23-3' b 21'$ b W-r b t1'-11' b 1574 b 1T-7 b t1'-S b r xYx OATrx 9220 257-i t'd 2T-r d 2S'-11'd 2C-9'0 23.10'd 27-11'd 27-r d 21'$d 21'-1'tl 20-r o 20-1`d 19.9'd Z'x r x o.o7r x 0224- z9$ d 257-157 0 25-11' b 2T-11' b 21'5 b 205 b 19-1R D 1'x 6'x 0.072'x 0224' 24'5 b 27-T D 20'-11• b 19-T b try b 17.9' b 157-57 b iS-11' D Z NrxrxO.oarx 0.306' 304 d Zr-r d 257-10'd 2S$d 24'5 d 23-16 d 23•-1'it z1'-5'd21'•10d 21'4'd 217-1fr d 2174'a r x r x O.OTr x 0224' 37-r d 30'-S' b. 257-r b 21•-10' b 23'-r b 27$ b 21-6- b r x r x 0.07r x 0224' 2V-1g• D 24'$ b 27$ b 21'-r D 19-t2' D /8-1Y b 157-Y b 1T-C bYz/0-x 0.o9r z 9.762' 357-Y d 33-11•d 3Z-7 d 30•-10d 29$it 28$d 2T-V d 257-11'd 2F-r d 25-r a 254 d 24•$d rzYxO.Oerz0.310' 33'-9' d 31'5 d W'-2' d 28-10 d 2T-3' b 29-1C b 2C$ b 23-T D r x Y x 0.06r x 0.310' 29-7 0 257-ltr' b 21'-10' b 233 D 21•-11' b 2(Y-10 b 19-10 b it-11• D V) 2"x 16 x o.09r x 0.362' 40.57 d3573• d 3574' d 34'-9' d 37-9' b 31'-1' D 29$ b 2V-5 b r x 16 x 0.092"x 0.76 35-7 0 37-3' b 29-i t' b 2T-1 Y D 26'4' 0 254 b 23-10 D Z7-10' b J # Tributary Orad Width Notes: Notes: Q Double Self-Maang Beams r1' I 3--r 1 5757 1 4•4' 1 4_;4 V-V Sr 1 6.57 1 6.1" T-0' I r4- r4 1.Tables assume extrusion orsMed with longer extrusion dmesim parallel b applied bud. 1.Tables aasne extrusion oriented with longer extrusion dimension parallel to applied bad. Allowable V I baedb w er donecdon'd 2 Spans maybe krerpolated. 2 Spans may W iMapolebd. r x r x OATr x 0221" 3573 d 31'4'it I-gl 257 'tl 274•tl 257-5'a 25•-r d 24'•1O 0 24'-7 d 257.7-a 23.1'd ?7-T d r x r x o.o7r x 9224' 3571 tl 344•a 3x•57 d 357-r a 29-t1'a 257-157 a z1'-r d zea'd 2571 a 25-t -tl 25.4•d W-9-a Table 3A.1.4-120 Allowable Spans for Ridge Beams with Self Mating Beams 2-x 9-x 0.a6r x 0.306' 357-14'd 36•$di 365 d I 31'41"d 30-1tY d 29`40-d I 257-11•tl 2573 aI 2T•7-d 1 26'-11•it 26.4•it for Screen,Acrylic or Vinyl Rooms (j) N..10'x O.Osr s 0.369' 4557 a 17-16 a 40$d 38-1 Y d Sr-5 tl 357-Y d 34•-1 Y d 33-1 r d 33-Y a 37.3'd 31'1'd 30'-19 d For 3 second wind gust at 120 MPH velocity;using design load of 13 NSF a 1.It's recannurnded that the ahginser be corsurod on any miscellaneous 9anwng boom that spas more tlhan 40 Tributary Load Width W><Purfln S q U. # 2 Spans are based on 120 M.P.H.wind toed plus deed bed for sorting. Self erefkh9 Seetbru S5 r-0' Tr 6'-0' 9'-2' 157-0' 11'57 15757 -'^ 3.Span is meaured from career of mreedon to fascia or wall correction. Allowable Span'V/bendkil'b'or de6ectbn'd Cl) r 4.Above spars do not indWe lergN of knee brace.Add Iroritonbl distance from upright to abler of brae to beam connection to the above spars for total r x 4'x 0.044 x 0.1 o6 13•r b 17-4 b ii'$ b 10-6 D 10-1• b 9•r b 9-r b 575 b beam Spans �. _ r x S'x 0.050-x 0.100' 157-10' b 154• b 14'-2' b 13-3• b 17$ b 11•-12' b 114• D 10-10' b C S. `^ x 0.050'it0.120" 195. b 175 b 1rS b 15••4' D W-V b 17-r b 13-1' b 17-T D o Table 3A.1.3-130 Allowable Beam Spans for Miscellaneous Framing Beams for for Screen,Acrylic or Vinyl Rooms 2"x r x 0.055'x 9.126 21'41• D 19.11• b 157$ b ir4• b IF4' b ISr b u•5 D IC-2" b m QD � For 3 second wind gust at 130 MPH velocity;using design load of 15 NSF r i r x 0.055'w/Insert 2T3• it 25'5 it 21•$ d 234 b 2t•$ b 20-r D 19$ b tr-16 b W Aluminum Alloy 6063 Ti r x r x 0.0757 x 0224' 257-t' d 25'•10' D 2Y-t1• b 274' D 21'-1' b 19-11' b 10'-Yb 1r3 D L Oy �s x 9"x 0.07r x 0220 3fy5 3•b 27.11• b 25-11' b 24'- b 27-16 b 21'1' b 20$ b 195 b J Hollow and Trite 4sW Width 2' - 11.. • . Q� 2 57 x Y x 0.002's 0.316 31'-11• d 30-Y d 257-4 b 26'-r b 2S-t' b 2575 b 22• b 21•-r b IL -e' C�a si s.lf Mad Beams 1'r 1'r 1'a" 4 r 4 57 5757 1'r r-0- 1'r 575 1'r _ a "° 5757 1'x 16 x 0.092'x 0.769' 357-5 di•-2• a 34•-r 6 3t'-11' b 39-r D 26•-r b x573 D 26'-r e U W r' I � I A1bwaWe S i'I bend b'or deflectbn'd C W tv r x 4'x 0.056 Hollow IT-W 0 104.0 9-16 d9-S d 9.1• tl r-9' d 1'S d 8.57 o 574 d T-/6 0 T5 d T$ d Nom' Z les X 1.Tabassume extrusion anconad with longer extrusion dunrnsm parallel b applied lout. ` V' p r z S•x 0.056 Hollow 14•-2'it tr4'it 17$d 17-7 6 r d 11• IV-T 0 10-/1•d 10-r it 104'it 10-i'it 9-1g•d 91• it 2 m 2.Spans maybe interpolated. 2"x 4'z 0.0/4's O.tOo' 174'0 11'-T t -t' W d O/ d 10$d f0-1' d -S d -12' 0 95 9 9-2' d r d 85 d r$ d 84' d 3 J I 1'z 4 x 0.0657 x 0.100' 15-3'd 11'4'd 13-r d 13'4 d 1757 d 17-i'd i i'-r d 11'5 d i t'-7•d 117-1(rd 10-T d 104'd Cc � r x 6 x O.osc,x e.126 1T-70 it try it IW-11'd 15'-r d 14'57 d 14'-2*it try d 134'd 17-11'd 171•d 174'it 17-1'dpans for Ridge Beams with Self Mating Beams _3 ` Table 3-0.1.4-130 Allowable 5 g ng r it T x O.OSS'x 0.12r 204'it 19-Y it it-r d 174•it IVr it 19-1*it 1S-r it 15-2'it 14'-9'it /4'S d 14'•1'd 1575 ill for Speen,Acrylic or Vinyl Rooms r x r x 0.056'w/insert 24*r it 257-1.0 21•4 I'd 20-11'd 20'-r d 79$d t V-16 d 184'it 17'-t6 d tr-5'it 174 d157 r d For 3 second wind gust at 130 MPH velocity;using design bad of 15 NSF Y x C s O.OM's 0221' 24-Y d 2575 d 2?$d H E d 20457 d 19-1t'd 194•it t1'-10'tl 184'd 1r•16 d 1r-S d 1T-t'd t Load WIdM W e►vrlM Y x 0 x OA7r x 022M ZT-T d 2S-i t'd 2C$d 23-T d 27$d 21'-11'd 2t'-r d 20-T d 20'•1`d 19-T d 19-T d 16'5 0 Self Matt"Sections S•-0' r-1' 1'a' r1' r-0' Ira' t1'a' 1757 r i Y x 0.062'x 0.306" ZF-r d I 2F-1 t•it L 25-T d I 24•$it 1 23rd I 2Z-9•it I 224 d I 21'5 d I 20-16 it I 204•it 1946 it 19-4 d Atbweble Span V I V or deaecl{on'd r x 16 x OA92'x 0.369" 1 34••4 it I 32.6•d 305 0 I29-5 0 I 284'd I 2T4•d I 26'$d I 25-9'it I 254 it 1 21'-5'd I 23'-16 d 234'it I I, 2 x 0.044 x 0.06 17$ b 17'$ D 10a' b V-12' D 9S b V-1 t• b 8$ b V-2' b T Will widtha 2'x 4 x O.O50x 9.106 15$ b IC-r b 13'3• b 1r4• b 11'r b 111.1' b 19-r b 174' b Douala Siff Beam 7th" 5757 r-0' stn C r x P x 0.050•x 0.126 t1'-t' b t1'$ b 154' b 14'4• b 1357 b 17-16 b 1Z-r b 11'$ b -mow r 1'r sr r-0- 1'a" r1' r4- 6•r 1z o. o- 204• . r Allowable span V/bend' 'b'er deftection'd rxrxoowx If 1 1'r it t 3 b ti*-1' b t5-r b 1C-5 b 157-4' b tr-r b rxrx 0.055'M inert 257-t' d 2/'-T d 27.11` D 21'5 b 2D'•T 6 19-T b 19'3 b 1T$ D 71.1. Y x r x O.OfY s 0224' 31'•6'd 29 11'd 2574'd 2T-1'd 257-1'd 2S-Y d 24'-S d 257$d 23-1'd 2Ta'd 21'.11'd 21'$d r x C i 0.072'x 9221• 26'•6 b 24'-0' b 273 D 20-16 D 19-T D 157-T D 1T$ D t1'-1 Y D $EAAI, Y z 6:0.072'x 0.221' 3a'-9 d 37-9"tl 31'-1'd 295 d 257.7 d 2T-T d 257-9-d 25-t t'd 254'd 24'$d 24•-Y d 23-r d r i Y x 0.072'x 0224' 257$ b 257.1' b 24'-1' b 2Z-T b 21'-r D 20'-7 D 193 D 157-5 b r z Y z 0.062's 0.3057' 374 d N'-16 tl 33.1•d 31'5 it 30-5'd 29.5 d 26'$d 27.6'd Zr-11'd 257-3`0 2SS d 25-1'd r i Y x 0.0657 x 0.310' 30.4 d 257.7 0 257$ b 21'-9' b 234' b 27-r D 21'-t' D ZO3 b EET 2'x 16 z 0.092'x 0.369' 434.0 40-16 d 357-9.0 357-7•d 3S$d 34'-5 0 33'4'0 37-4 d 31'$it 305 a 317-1-d 293•d r x 16 x 0.0957x0.3 357.7 d 31'4' b 31'•16 D 29-9' b 257-1' D 26.- b 25'5 b 264' b Nob: Nobs. 1.It is rewnrnsnded that the engineer be corsWsd an anY misce6aneoa framing beam that spam more than 40 2.Spam are based on 130 M.P.H.wind bed plus dead bad ler Ia i g. 1.Tables assume extrusion oriented with longer extrusion dimension pare9at to applied bad ^ 3. Span is measured from center of connection to fasts or wall connection. 2.Spars may be Interpolated. 4.Above spans do not ndWe length of knee brace.Add horW let distance from upright to center of brace to beam connection to the above spans for tow beam spans. 5. Spam maybe Interpolated. 07-0&2004 OF 8 REMOVE RAFTER TAIL TO '.o HERE 1 ' REMOVE ROOF TO HERE 1 #8 x 11T S.M.S.SPACED a PAN RIB MIN.(3)PIER PAN RAFT RTRUCTURE TRUSS OR EXISTING TRUSS OR RAFTER—v FLASH UNDER SHINGLE 1'FASCIA(MIN.) BREAK FORMED METAL SAME HOST STRUCTURE TRUSS OR #10 x 1-1/2'S.M.S.OR WOOD w THICKNESS AS PAN (MIN.) RAFTER SCREW(2)PER RAFTER OR z a -ANCHOR TO FASCIA AND TRUSS TAIL a o RIZER OF PAN AS SHOWN #8 x 3(4'SCREWS Q 6'O.C. HOST STRUCTURE—� ROOF PAN #8 x 1!2'SCREWS EACH RIB HEADER �— 1'FASCIA(MIN.) ROOF PANEL NEW 2 x_FASCIA 1 REMOVED RAFTER TAIL ROOF PAN TO FASCIA DETAIL a o COMPOSITE ROOF PANEL SCALE: T=1'-0' — --------_ { 4o REMOVE RAFTER T/UL TO HERE a o Q �a REMOVE ROOF TO HERE HEADER(SEE NOTE BELOW) ---- #8 x 112'S.M.S.SPACED #8 x 11T S.M.S.@ 8'O.C. 1 @ 8'O.C.BOTH SIDES W EXISTING TRUSS OR RAFTER - - o—FLASH UNDER SHINGLE FOR MASONRY USE HEADER(SEE NOTE BELOW) o z o 1/4'x 1-1l4'MASONRY 0 Z EXISTING HOST STRUCTURE: ANCHOR OR EQUAL #8 x(0117)S.M.S.@ 8'O.C. ' WOOD FRAME.MASONRY OR @ 24'O.C.FOR WOOD USE J (7 Z J #10 x 1-1l2"S.M.S.OR WOOD OTHER CONSTRUCTION #10 x 1-112'S.M.S.OR WOOD FOR MASONRY USE Z W Z 0 Q SCREW(2)PER RAFTER OR R 1/4' MASONRY x 1-114'MASO I TRUSS TAIL G SCREWS to 1T O.C. EXISTING HOST STRUCTURE ANCHOR OR EQUAL UAL ~ L j WOOD FRAME,MASONRY OR @ 24'O.C.FOR WOOD USE eB LL W o OTHER CONSTRUCTION #10 x 1-112'S.M.S.OR WOOD 4 ALTERNATE ROOF PANEL TO WALL DETAIL SCREWS 0 1T O.C. D m o Z HOST STRUCTURE - COMPOSITE ROOF PI W SCALE: T=1'-0^ } Q O N O HEADER ROOF PANELS SHALL BE ATTACHED TO THE HEADER W/(3)EACH#8 x 1/T LONG CORROSION RESISTANT V p M NEW 2 x_FASCIA S.M.S.W1 11T WASHERS.ALL SCREW HEADS SHALL BE CAULKED OR SHALL HAVE NEOPRENE GASKET ALTERNATE COMPOSITE ROOF PANEL TO WALL DETAIL Q OJ W BETWEEN THE WASHER AND THE PAN. PAN RIBS SHALL RECEIVE(1)EACH#8 x 12'SCREW EACH.THE SCALE: T-1'-0' Z N LL PANS MAY BE ANCHORED THROUGH BOXED PAN W/(3)EACH#8 x 1'OF THE ABOVE SCREW TYPES AND COMPOSITE ROOF PANELS SWILL BE ATTACHED TO EXTRUDED HEADER W/(3)EACH W U) '- THE ABOVE SPECIFIED RIB SCREW. REMOVED RAFTER TAIL COMPOSITE ROOF PANEL TO WALL DETAIL_ #8 x(a+V2')LONG CORROSION RESISTANT S.M.S• W o SCALE: T=1'-0' V Z N #8 x 1/Y ALL PURPOSEco SCREW @ 1T O.C. J EXISTING TRUSS OR RAFTER BREAKFORM FLASHING Q 6"x T x 6'0.024'MIN.BREAK 6• 10' #8 x 11T WASHER HEADED FORMED FLASHING CORROSIVE RESISTANT CAULK ALL EXPOSED SCREW ROOF PANEL HEADS SCREWS Q B'O.C. ti ALUMINUM FLASHING W N SEALANT UNDER FLASHING LUMBER BLOCKING TO FIT (2)#10 x 1-11T S.M.S.OR �'� 2y LL WOOD SCREW PER RAFTER z a rn PLYWOOD/OSB BRIDGE o 3'COMPOSITE OR PAN ROOF OR TRUSS TAIL a c r� FILLER V Y (SPAN PER TABLES) C T 1 3^COMPOSITE ROOF PANEL C ^ I - ALTERNATE O #10 x 3/4'S.M.S.OR WOOD (SEE SPAN TABLE) ABLE) co N m SCREW SPACED 0 1T O.C. m �- STRIP SEALANT BETWEEN Hai EXISTING FASCUI SCREW#10x(T+12j Wf FASCIA AND HEADER w J O 7- EXISTING FENDER WASH_R 1/T SHEET ROCK FASTEN TO N LL a a PANEL W/1'FINE THREAD 0 W N LL POST AND BEAM(PER SHEET ROCK SCREWS @ 16' ? O.C.EACH WAY WHEN SEPARATION BETWEEN xQ TABLES) DRIP EDGE AND PANEL IS W m FASTENING SCREW SHOULD LESS THAN 314'THE FLASHING BEA MIN.OF 1'BACK FROM SYSTEM SHOWN IS REOUIRED THE EDGE OF FLASHING -� ---- -- ---- COMPOSITE ROOF: ALTERNATE MOBILE HOME FLASHING ALTERNATE DETAIL FOR FLASHING ON SHINGLE ROOFS #8 x'r+1/T LAG SCREWS W/ FOR FOURTH WALL CONSTRUCTION SCALE: T= 1-t k•0 FENDER WASHERS r-0^ 8'O.C.THRU PANEL INTO 2 x 2 COMPOSITE ROOF PANELS NOTES: SCALE T=1'-0' 1. FLASHING TO BE INSTALLED A MIN.6'UNDER THE FIRST ROW OF SHINGLES. T X T x 0.044'HOLLOW EXT. i 2. STANDARD COIL FOR FLASHING IS 16' .019 MIL.COB_ --- -- ------- 5116'9 x 4'LONG(MIN.)LAG INSTALLATION INSTRUCTIONS: 3. FIRST ROW OF EXISTING NAILS MUST BE REMOVED TO INSTALL FLASHING PROPERLY. SCREW FOR 1-112' I 4. FLASHING WILL BE INSTALLED UNDER THE FELT PAPER WHEN POSSIBLE A. PLACE(2)BEADS OF CAULKING ON BACK SIDE OF HEADER BEFORE INSTALLING. EMBEDMENT(MIN.)INTO 00 k 5. HEADER WILL BE PUTTY TAPED AND CAULKED EVEN THOUGH FLASHING IS TO BE RAFTER OR TRUSS TAIL B. SLIDE 1'TAB AT TOP OF HEADER UNDER DRIP EDGE DO NOT PUSH DRIP EDGE UP. B.SF THE DROP FROM THE EDGE OF THE SHINGLE DOWN TO THE TOP OF THE HEADER IS L DRIP EDGE MUST MAINTAIN SAME PLANE AS SLOPE OF ROOF. MORE THAN 1'THEN THE DRIP EDGE WILL HAVE TO BE BROKEN TO CONFORM TO THIS CONVENTIONAL RAFTER OR SHEET DROP. TRUSS TAIL C. FASTEN HEADER TO FASCIA BOARD WITH#10 x 1'SCREWS G 6'0.C.STAGGERED T. WHEN USING FLASHING THE SMALLEST SIZE HEADER AVAILABLE SHOULD BE USED.1T TOP AND BOTTOM(SEE DETAIL ABOVE) .03 MIL ROLLFORM ORB*BREAKFORM IS BEST SUITED FOR HEADER SINCE R KEEPS THE D. PLACE COMPOSITE ROOF PANEL INTO HEADER AND ATTACH TO 4TH WALL POST AND FLAP LIP OF THE HEADER BACK FROM THE EDGE OF THE FLASHING. 6B/ g, WHEN SEPARATION BETWEEN DRIP EDGE AND PANEL FLASHING IS REQUIRED 11T BEAM SYSTEM ONLY. DO NOT ATTACH TO HEADER. HEADER IS USED AS FLASHING SEPARATION MINIMUM. WEDGE ROOF CONNECTION DETAIL / p ONLY. 9. STRIP SEALANT BETWEEN FASCIA AND HEADER PRIOR TO INSTALLATION. 07-08-2004 OF S SCALE: T=I%T i PAN ROOF ANCHORING DETAILS FLASHING 0.024'OR 26 GA. RIDGE CAP SEALANT GUTTER BRACE 0 2'-0'OIC GALV. PAN HEADER(BREAK- - _ -- - CAULK #8x9/16'TEK SCREWS @ FORMED OR EXT.) SLOPE PAN RIBS EACH SIDE HEADERS AND PANELS ON BOTH SIDES OF BEAM FOR o--- � 2'x 2x 0.06'x BEAM DEPTH+ ----- ----- GABLED APPLICATION CAULK ALL EXPOSED SCREW - - 4-ATTACH ANGLE'A'TO HEADS d WASHERS FASCIA Wl 2-3x8'LAG SCREWS @ EACH ANGIP --------- _ fib x 112"S.M.S.(3)PER PAN ,I AND(1)AT PAN RISER ALTERNATE CONNECTION: PAN OR COMPOSITE ROOF MIN.r x 3"x 0.050'S.M.B.(4) #10 S.M.S.C EACH ANGLE #8 x 1-114'SCREWS(3)PER PANEL COMPOSITE ROOF SUPER OR EACH SIDE ® PAN INTO BEAM THROUGH HEADER EXTRUDED ® BOXED END OF PAN AND #8 x 112-S.M.S.(3)PER PAN HEADER ALONG PAN BOTTOM CAULK i�TT`RPSOFFrr ROOF PANEL TO BEAM DETAIL rx9'BEAM - ` 1 LA B SCALE: r=r-0" WHEN r 0 HOLE EACH END FOR OR PANS TO WNING PANELS OOD PLATES FOR PAN ROOFS: J (2) FROM GSUTTER T 1 BEAM A= WIDTH REQ.FOR GUTTER (3)EACH 08 x 1/r LONG S.M.S. D WATER RELIEF B=OVERHANG DIMENSION MINIMUM BEDMENT OF 1' PER 1r PANEL W1 314' N Z ALUMINUM PAN WASHERO W CAULK ALL EXPOSED SCREW O Z O BEAM TO WALL CONNECTION: HEADS d WASHERS (7 U Z /l (2)2x r x 0.060'EXTERNALLY MOUNTED ANGLES ATTACHED TO WOOD WALL W/MIN.(2)318"x r FOR COMPOSITE ROOFS: ROOF PANEL �' W O 0 :k Z � - 4'CONCRETE ANCHORS TO CONCRETE OR MASONRY +1 W/ PER TABLES SECTION 7) Z _ — Q SIDE R 1 4'x 2 1/ CO C ETE t x t S.M.S.S. LAG SCREWS PER S DE O 2 / # 0 WALL ADD(1)ANCHOR PER SIDE FOR EACH INCH OF BEAM DEPTH LARGER THAN 3- 1-114'0 FENDER WASHERS > U) 0 W 1r O.C.(LENGTH= �_ SUPPORTING BEAM otS W W o PANEL THICKNESS+1') (PER TABLES) Ur- (ALTERNATE)(1)1-3/4'x 1-314'x 1-3/4-x 1/8'INTERNAL U-CLIP ATTACHED TO WOOD WALL W/MIN.(3) 0 ROOF BEARING ELEMENT J D m Z 318'x r LAG SCREWS PER SIDE OR(3)1/4'x 2-1/4'CONCRETE ANCHORS TO CONCRETE OR (SHOWN)AND 24'O.C.@ MASONRY WALL ADD(1)ANCHOR PER SIDE FOR EACH INCH OF BEAM DEPTH LARGER THAN NON-BEARING ELEMENT(SIDE Q' qO C-4 O SUPER OR EXTRUDED GUTTER TO 2"x 9"BEAM DETAIL WALLS) 64U D it SCALE: r=1*4 Z(� _ W CANTILEVERED BEAM CONNECTION TO FASCIA DETAIL ROOF PANEL TO BEAM FASTENING DETAIL W 2 SCALE: 2 -V4r SCALE: r=1•-0- W V Z N to g #10 x 4'S.M.S.W/114 x 1-1/r 0.024'x 1r ALUMINUM BRK _ J MTL RIDGE CAP S.S.NEOPRENE WASHER Q ALTERNATE 3V4.0 HOLE 8'O.C. ! VARIABLE'E SEALANT HEIGHT RIDGE PAN ROOF BEAM EXTRUSION #8 x 9/16'TEK SCREW C 8' w ~ N I I O.C. CAULK ALL EXPOSED SCREW a! ROOF PANEL I - I HEADS AND WASHERSrz (3)114-0 THRU-BOLTS(TYP.) m tD ® ® 1/8"x 3'x 3'POST OR SIMILAR ® ® I #8 x 9/18'TEK SCREW Q 6' _j ® ® O.C.BOTH SIDES LL 0Wv ——— —— — —— ——— PANEL ROOF TO RIDGE BEAM C POST DETAIL X S SCALE: r=1'0 r x r S.M.B.W/(4)#10 1 O 318'x 3-lir LOUVER VENTS RECEIVING CHANNEL OVER S.M.S.®EACH ANGLE 0.024'X 1r ALUMINUM BRK a #10 x 4'S.M.S.Wt 1/4 x 1-10 FASCIA COVERS PAN d SEAM OR 314'0 WATER RELIEF BEAM ANGLE PROVIDE 0.060' EACH SIDE MTL RIDGE CAP NEOPRENE WASHER 8"O.C. J V OF PAN d ROOF HOLES REQUIRED FOR 2--lirSPACERRECEIVING d 3'RISER PANS CHANNEL ANCHOR POINTS(2) NOTCH ANGLE OPTIONAL SEALANT 010 x 2-11r S.MS.@ RAFTER VARIABLE HEIGHT RIDGE TAILS OR Q r O.C.MAX W/ MUST STRENGTH IN FOR ANGLE BEAM EXTRUSION #6x9/16'TEK SCREW®8- r x 6-SUB FASCIA O.C. ROOF PANEL _ CAULK ALL EXPOSED SCREW CANTILEVERED BEAM CONNECTION AT FASCIA(END VIEW) 4' H OR A 3/8-x 4'LOUVER SCALE: r=1'0 HEADS AND WASHERS GUTTERS FOR 2-1/2'AN HAVE A 3l 0 OLE D LARGER PANS SHALL VE eEET 1r FROM EACH END AND 48'O.C.BELOW THE PAN RISE BREAK TO PREVENT WATER r x_SELF MATING BEAM BUILD-UP ON THE ROOF.THIS WATER RELIEF SYSTEM IS RECOMMENDED FOR PANS 118'WELDED PLATE SADDLE SMALLER THAN 2-1/r ALSO - �-WI(2)114'THRU-BOLTS#5REBARIMBEDDEDINTOP OF CONCRETE COLUMN(BY OTHERS) PAN FASCIA&GUTTER END CAP WATER RELIEF DETAIL PANEL ROOF TO RIDGE BEAM C�CONCRETE POST DETAIL_ r 1' = -0- SCALE: r=r-0' SCALE: 07.08-2004 OF 8 I . ` SECTION 7 SOLID ROOF= PANEL PRODUCTS SOLID ROOF PANEL PRODUCTS SECTION 7 Table 7.2.1 Allowable Spans for Elite Composite Roof Panels for Various Loads Table 7.3.6 Allowable Spans for 0.024" PRO-FAB Composite Panels Elite Aluminum Corporation w/ EZ-LOCK for Various Loads Statewide Product Approval MFL1049 Metals USA Building Products L.P. Manufacturers'Proprietary Products:Aluminum Alloy 310:1 H-14 or H-25 Foam Core E P S.N1 Density Manafacturers Proprietary Products:Aluminum Alloy 3105 H•14 or H-25 Foam Core E.P.S.01 Density 3"x 48"x 0.024"Panels Foam Core E.P.S.Aft Density 3"x 46"x 0.021"Roof Panel w/EZ-LOCK Open Structures Screen Rooms Glass d Modular Rooms Overhang I Opin Structures Screen Rooms Glass i Modular Rooms Overhang/ Wind Mono-Sloped Roof b Attached Cove(ii Enclosed Cantilever Wind Mono-Sloped Roof i Attached Covers Enclosed Cantilever Regiontb2 3 4 1b2 3 4 __t&2 3 4 All Region tit 3 4 tit 3 4 1i2 3 4 All span span span span span Span span span span Roots span span span span span span span span span Roofs 100 MPH 2VA' 23'-10' 23'-0" 20'-4' 22'-9' 21'-1 t" 15'-1` 17'-9" 16'-3` 4'-0" 100 MPH 21'-4' 23'-10' 23'-0' 20'4' 27-9' 21'-11' 15' 1' 1T-9' 16'3' 4'-0" 110 MPH 21'4' 23'-10" 23'-0' 18'-8' 20'-11' 20'-2- 13'-q- 15'-d` 14'-10' 4'-0` 110 MPH 21'-4 23'-10' 23'-0' 18'-8' 20'-11' 20' 13'-9' 1VA 14'.10' 4'-0' 120 MPH 20'4' 22'9" 2r-11' 17'-5' 19'-5' 18'-10` 12'6" 13' 11` 13'-6' 4'-0' 120 MPH 20'4' 27-9" 211'-i t' 17'-5' 19'-5' 18'-10' 12.6' 13'-11" 13'-8' 4'-0' 123 MPH 19'-6" 21'-110" 21'-t' 15'-11- 18'-11' 18'-3` 11'-8' 13-8- 13'-2" 4--0" 123 MPH 19'-6' 21'-10' 21'-1' 15-11' 18'-11' 18'-3' 11'-8' 13'-8' 13'-Z" 4'-0' 130 MPH 18'-0' 20'-2' 19'-5" 15'-1` tT'-9' 16'-3' tt'-1' t7.1t- 112'6' 4'-0` 130 MPH 18'0' 2a-r 19'-S' 15'-1' 1T-9' 16'-3' 11'-1' 12%11' 12'-6' 4'-0- 140 MPH 12'-4" 13'-9' 13'-3" 12'A` 13'-9' IT-3" 10'-3" 11'-6' 1 r-1" 4'-3' 140 MPH 12'-4' 13'-9' 13'-3' 12'-4' 13'-9' 13'-3' 10'-3' 11%6' 11'•1' 4'-3' 150 MPH 174' 113'-9' 13'3' 12'4' 13'-9" 113' 3" 9'-6' 10'-8' IVA' 3'-11' ISO MPH 12'1' 13'-9' 13'-3' 12'-4• 13'-9' 13'-3' 9'-6' 10'-8' 10'4' 3'-11' 3"x 48"x 0.030"Panels Foam Core E.P.S.01 Density 4'x 44"x 0.024"Root Panel wl EZ-LOCK Open Structures Screen Rooms Glass b Modular Rooms Overhang I Open Structures Screen Rooms Glass i Modular Rooms Overhang/ Wind Mono-Sloped Roof i Attached Covers Enclosed Cantilever Wind Mono-Sloped Roof i Attached Covers Enclosed Cantilever Region 1b2 3 4 1b2 3 4 1&2 3 4 All Region 1 i2 3 4 t i2 3 4 11,2 1 3 4 All span span span span span span span span span Roofs span span span span span span span span span Roots 100 MPH 24'-11' 27%11' 27'-0' 23'-10' 26'-8' 25'-9` 18'-8' 20'-10' 20'-2' 4'-0- 100 MPH 23'-S' 26'-2' 25'-3' j 22'-3' 24'-11' 24'-t' 17'-5' 1T-6' 18'-10' 4'-0' 110 MPH 24'-11' 27'-11' 27'-0" 21'-11' 24'-0' 23'-8` 16'-2' 19'-3" 118'-8' 4%0' 110 MPH 23'-S' 26'-r 25'-3' 20'16' 27-1 t' 27-2' 15' t' 118'-0' 1T-S' t'-0' 120 MPH 23'-110" 26'1f' 25'-9' 20'-5' 27 10' 22' t' 14'8' tl'-8` 15'-10- .-9. 5' 110' 4'-0' 120 MPH 27-3' 24'-11' 24'-1' 17-t' 21'-4' 20'-7' 13'-9' 15'4' 14'-10' 123 MPH 22'-111' 2V-7" 24-9' 19'-10' 22'-2' 21'-5` 14%4' 16'-0' 15'-6' 4'-0` 123 MPH 21'-5' 23'-11' 23'-2' 18'16' 20-9' 20'-0' 13'-5' 114'-t 1' 11'6' 4'4r 130 MPH 211'-2' 23'-T 27-110" 118'8' 20' 110" 20' 2" 13'-T 115' 2` 114'-8' 4'-0" 130 MPH 19'9' 27-1' 21'4' 1T-S' 19 6' L14 0' 17-8' 14'-r 13'-8- 4'-0' 140 MPH 14'-5" 16'-2' 115-T 14'-5' 16'-2` 15' 7` 112'-8' 14'-2" 13'8" 4'-0` 140 MPH 13'16' 15'-1' 1<'-T 13'8' 15'-1' T 1 t-3' 13'3' 12'9' 4'-0" 1 SO MPH 14'-5- 16'-2' 15'-7' 14'-5" 16'-2" 15'-7- 1 t'-2- t T-2" 12'-9- 4'-0` 150 MPH 13'-6' 15'-1' 14'-7' 13'•8' 15'•1' 14'-T' 10'-S' 12'•4' 11.4 4'-0' 4"x 48"x 0.024"Panels Foam Core E.P.S.N1 Density S"x 49"x 0.024"Roof Panel w/EZ-LOCK Open Structures Screen Rooms Glass b Modular Rooms Overhang f n 3tructures Screen Rooms Glass t Modular Rooms Overhang! Wind Mono-Stoped Roof b Attached Covers Enclosed Cantilever Wind Mono-Slop*d Root i Attached Covers Enclosed Cantilever Region 18,2 3 4 1b2 3 4 1b2 3 4 Ali Region tit 3 4 tit 3 4 tb2 3 4 All span span span span span span span span span Roofs span span span span span span span span span Roofs - 100 MPH 23'-5' 26'-Z" 25'-3" 27-3' 2 a'-t t' 24'-1" 17'-5' 19'b" 18'-10` 4'-0" 100 MPH 26'•5' 29'-6' 28'16• 25'-r 28-1' 27'-2* 19'-8' 21'-11' 21'-3' 4'.0' 110 MPH 23'-5' 26'-2' 25'-3' 20'-6' 22'.1 r 22'-2' 15'-1' 18'-0` 17'-5` 4'-0" 110 MPH 26'-5' 27-6' 28'1f' 23'-r 25'-10' 24'-11' 18'-2' 20'-4' 19'-8' 4'-0" 120 MPH 27-3" 24'-11' 24'-1' 19'-11' 21'4- 20'-7- 13'-9" 15'-4" 14'-10" 4'-0' 120 MPH 25'-r 28'-1• 2r-r 21'-6' 24'-1' 23'-3' 15'16' 18'11' 18'-0' 4'-0" 123 MPH 211'-5` 23%11' 23'-2' 18'-6' 20'-9' 20'-0- 13'-5' 14'-11- 14'-6- 4'-0" 123 MPH 24'-r 2T'-0' 26'-1' 20'-11' 23'-5' 27-7' 15' 1' 18'-1' 17'-6' 4'-0' 130 MPH 19'-9' 22'-t' 21'4- 1T-5' 119'6' 18'-10' 17-8` 14'-2" 13'-8` 4'-0" 130 MPH 27-4' 24'-11' 24'-1' 19 8' 21'-11' 21-3' 14'4' 15' 11" 15'-S' 4'-0" 140 MPH .13'1'1' 15'-1' 14'-7' 13'-6' 15'-1' 14'-7` 11'-3' 13'-3' 12'-9" 4'-0" 140 MPH 15'-3' 1T-0" 16'-5' 15'-3' 17'-0` 16'-5' 13'-4' 14'-11' 14'-5' 4'-0' 150 MPH 13'6" 15'-t' 114'-T 13'-0' 115' 1" 14'-7' 10'-5' 12'x' 4'-0` 150 MPH 1S'-3' 1T'-0' 16'-5' 15'3' 1T-0" 16'-5' 17-5- 13'-11' 4"x 48"x 0.030"Panels Foam Core E.P.S.01 Density 6"x 43"x 0.024"Roof Panel w/EZ-LOCK Open Structures Screen Rooms Glass b Modular Rooms Overhang/ Open Structures Screen Rooms Glass b Modular Rooms Overhang/ Wind Mono-Sloped Roof i Attached Covens Enclosed Cantilever Wind ' Mon o-Sloped Roof. i Attached Coven Enclosed Cantilever Region 1&2 3 1 4 1b2 3 4 1b2 3 4 All Regift 162 3 4 162 S 4 162 3 4 All span span span span span span span span span Roofs span span span span span span span span span Roofs 100 MPH 26'-11' 30'-1' 29'-1' 25'-8' 28'-9' 27'•9" 20'-1' 22'-5" 21'-8' 4'-0" 100 MPH 29'-1' 37.6' 31'-5' 2T1<' 30-11' 29'-11' 21'8' 24'-3' 23'-S' 4'-0' 110 MPH 26%11' 30'-1' 29'-1' 23'-8' 26'-5' 25'-6" 18'-7' 20'-9- 20'-1' 4'-0' 110 MPH 29'-1' 37-6" 31'-5' 25'-6' 28'-6' 2r-6' 20'-1' 27-5' 21'-8' 4'-0' 120 MPH 25'8' 28'9' 2T-9' 2t'•tt' 24'-7' 23'-9" 15' 10' 19'-t' 118'S' 4'-0` 120 -it- i7_41 23`-0' 26'16' 25W 18'-5- 20.7 19' 10' 123 MPH 24'•8' 27'-7' 26'-8' 2V-4' 23'-11' 23'•1- 15-5' 18'6` 1T-1 t' 4%0" 123 MPH 264' 29'-9' 26'-9' 23'-1' 25'-9' 24'-1 1' 17*-10' 19-11' 19'-3* 4'-0' 130 MPH 27-9' 25'-5' 24'-7- 2(Y-1- 27-5- 2 r$' 114'-7' 17'-5* 15'-9' 4'-0' 130 MPH 24W* 2r-6' 26'-6' 21'-8' 24'-3' 23'-5' 15'9' t 8'-9' 18'-r 140 MPH 15'-7' 17'-5' 116-10' 15'-7' 17'-5' 16'-10' 13'-8' 15'-3' 114'•9' 4'-0' 140 MPH 16'-9' 18'-9' 18'-r 16'-9' 18'-9' 18'•2' 14'-9' 17*4' 151-11, } 150 MPH 15'-7' 17'-5' 116' 10' 15'-T 1 T-5' 116' 10" 112'-8' 14'-2" 113'-9' 4'-0" 150 MPH 16'-9' 18'-9' 18'-r 16'9' 18'-9' 18'-r 13'-8' 15'4' 14'-10' 4'-0' Note: Total root panel width=room width +wall width +overhung Note: Total roof panel width a room width+wall width+overhang �� "' TU ELRE E1 LS USO L # 16644 Lawrence E. Bennett, P.E. FL # 16644 �� fl Lawrence E. Bennett, P.E. F CIvrLENGINEER-DEvELOPuENTCONSULTANT Elite Aluminum Corporation Building Products L.P. CIVIL ENGINEER•DEVELOPArENTCONSUL TAN7 P O BOX 21+368.SOUTH DAYTONA.FL 3212/ P.0 BOX 214369.SOUTH DAYTONA.FL 32121 TELEPHONE: (386)767-4774P.rv/Propu[p 1801 N W.64th Street 7615 American way, Grovel and. FL 34736 TELEPHONE: (3")767 FAX (385)767.6&% Ft Lauderdale.FL 33309 TEL: (352) 767-7766 x202 FAX• (352) 429-2011 FAX: (386)7674556 Tel (954,491-3700 Fax (954)491 1433 TOLL FREE: 1-800-342-9077 bitaufslannareetalsusa.coa PAGE PAGE U COPYRIGHT 2004 ! C) COPYRIGHT 2004 7-34 NOT TO BE REPRODUCED IN rvHOLE OR IN PART All t-OCT T,,E eW ITTEN PERMISSIW.OV ,F:. LNCL E BLN14 NOT 70 8E REPRODUCED IN WHOLE OR IN PART WITHOUT THE WRITTEN PERu15510N OF LAWRENCE E BENNETT.P E 7"45 9 I ' EDGE BEAM(SEE RIF1 TABLES General Notes and Specifications: INTERIOR BEAM(SEE TABLES 3A.1.1 d 31112) 3A.1.3) Lw FOR t.The totaving atnuctures a1 designed to be monied to block and wood hams structures of adequate HOST STRUCTURE OR / U f aatndruch of su 6capacitycient n9b he con" «/the adddion.hot"owner shag verify Ihat the fast stnx furs is it good condition FOURTH WAIL FRAME H• !(,HT(h) / t•x 7 2.t there is a question about the ftructure,the owner(at his own expense)shag hire an architect, PANS OR PANELS engineer,a a certified htonnrejrrsspection company b verify host stnuc4re capacity. H AllfMltJUM ROOF SYSTEM VAR S OR RAISED FOOTING MIN.3 112'SLAB ON GRADE �. 3.The structures des' using this section shag be limited to a maximurn projection of 16 from the Most PER SECTION 7 FOR FOOTINGS SEE DETAILS) I TYPICAL SCREEN ACRYLIC OR VINYL ROOM structure.Freesta�p g stnuAlres shag be limited to the maximum sports and size inWs d component 1 Wl SOLID ROOF TYP.FRONT VIEW FRAMING parts.to ger thin these Emits shag have site specific engineering. \ CARRIER BEAM POST ' •(HEIGHT OF UPRIGHT IS MEASt1RED FROM E' �n/9 4.The fold rules appy b attachments involving moble and manufactured homes: TOP OF 1'x2'PLATE TO BOTTOM OF WALL BEAM) a.SJpictnres to be placed adjacent to a mobile!manufactured home built prior b 1994 shag use"fourth !' �(�`� lei wan axastruction*or shag provide detailed obit with addition plans for site specific review and seal try the engineer This apples b all �' `! 'LW`LOAD WIDTH dans FOR ROOF ALTERNATE CONNECTION screen I glass rooms and 1 or structures to be attached. 71Z 'P17 FASCIA ALLOWED SIZE BEAM AND UPRIGHTS (SEE SECTION 7 FOR DETAILS) r, b.'Eolith wag construction*means the addition shag be tree standing with only the root flashing of the ! , two lydts being attached.The most common wag construction•is a post b beam frame ai4acent TYPICAL SLOPED SOLID ROOF ENCLOSURE (SEE TABLES) O Q b the rrotae/manufactured home.The same span tables ran be used as for the front wag bean.For SCALE- N.T.S. O.H. �Z V fourth wag beam use the carrier beam table.The post shag be sized b this manual andlor as of j jr a minimwn be a 2•x 3'x 0.050•with an IW x 2'x 0.044'knee brace of Qhs bean ALUMINUM ROOF SYSTEM SOLID ROOF // // X t~For rrtobtle!manufactured homes built after 1994.structures may,be attached.provided the project PER SECTION 7 FOURTH WALL FRAHOST STRUCTURE ME NO MAXIMUM W J (ELEVATION SLAB OR GRADE) Q j togow t to pan provided b this manual.The contractor/owner shag provide verification tat to struch"system of the host structure is adequate for the addition b be altK hed. yy USE BEAM TO WALL DETAIL *t T6 LW=LOAD WIDTH CO) Z It P=PROJECTION FROM BLDG. wRIDGE BEAM(SEE TABLES VARIES VARS 2 d.9 the rubble I manufactured home manufacturer certifies in writ ing drat We mobile home maybe W i xt t) P VARIES O attached b,then a'buxtl wolf is NOT required. NOTES: Z O u 5.Section 7 contains span rabies and the atacthrthert details for paps and composite panels- ANCHOR 1'x 2'OPEN BACK EXTRUSION W/114'x 2-114•CONCRETE FASTENER MAX.OF 7-(r D.C. U k 6.Sween v,ags between ex wags,floors,and cot s are considered inggs and shag be allowed and AND W/IN 6'EACH SIDE OF UPRIGHT ANCHOR 1'x 2'TO WOOD WALL W/010 x 2-t?S.M.S.W/ } � J ^g WASHERS OR 010 x 2-1/r WASHER HEADED SCREW Z-0(r ANCHOR BEAM AND COLUMN Z W z - heights shag be selected from the same tables as for other screen walls- N }- ( IINTERNALLY OR W!ANCHOR CUPS AND(2)08 SCREWS WI WASHERS�EACH POINT OF W d I 7.When using TEK screws in Neu of S.M.S..longer screws must be used to compensated for drip head. I CONNECTION. •d CO J 0 SELECT FRONT WALL BEAM FROM TABLE USING LARGER LOAD WIDTH VALUE OF P2 OR P/2+O.H. W Q B-For high velocity hurricane zones the minimum live load I applied bad shall be 30 PSF. U co et SELECT SCREEN ROOM FORTH WALL BEAM FROM TABLES x13I. - O J 9-A0 spsafied anchors are based on an enclosed building with a 16 projector and a 7 over hang b g for up a V $_ ANCHORS BASED ON 120 MPH WINO VELOCITY.FOR HIGHER WIND ZONES t15E THE FOLLOWING } 1 Q O Z AI N lel aid vlktdty d 120 MPH. A'4/FS ? CONVERSION:- 10. ONVERSION_ � values. U t m interpolated Detvveen values but riot outside _ fel, 0.Spars may losextrapolated 100 123 130 1 140 150 Q � Q Q () I f 08 010 012 012 F J W vl. 11.When nates refer to screen rooms.they shag appy to acrylic/vinyl rooms also. Z to LL 1J7 TYPICAL GABLE SOLID ROOF ENCLOSURE TYPICAL SCREEN ROOM w o 3 SCALE: N.T.S. SCALE:1/Ir=1*4r Cy- Z N i 6 Section 3A Design Statement: to 9 f ,j The structures designed for Section 3A are solid roofs with screen or vinyl wags and are considered J Pat of an,open structural system which is designed to be married to an existing structure. Q The desytn wind bads used for screen b vinyl rooms are from Chapter 20 of the 2004 Florida Building Y:. Code.The loads assume a mean roof height of less than 30':roof slope of Cr to 20':I=0.77.AN bads l are Desai on 20120 zaeen or larger.AN pressures shown in to below table are in PSF(OW). W Z Negative internal pressure coefficient is 0.00 for open structures. N ( N l,cs "qq Anchors for composite panel roof systems were computed on a load width of 10'and 16 projection P 1 with a Z overhang.Any greater load width shag be site specific. 1-ZO�'� Iq) a ty ' - General Notes and Specifications for Section 3A Tables: tD =�ro- Section 3A Design loads Conversion Table 3A-A m �' us If j �s for Screen.Acrjrlc i Vinyl Rooms Wpm Zone Conversions for Screen i Vinyl Rooms 07-06 ZOdt 3t W O W �I W �z" Ov.r J O 9 Frac Z201APF/weed Zees M Oibas O-- Rod will All RoofsRoofs w ft 100 MMI •10/-t0 9 •201-30 Wind Zona u• O= j Applied Load 0.Reetioo 6.narq AOpaed Low 0.a.ca- seriul; PURSUANT TO PROVISIONS OF THE FLORIDA DEPARTMENT OF rte W41 •101-11 11 +201-36 UP" ptsn tdI 44 Ibl HIGHWAY SAFETY d MOTOR VEHICLES DIVISION OF MOTOR 120 MPH •101-13 13 •201-43 100 to 1.09 1.14 q 1.12 1.18 VEHICLES RULE 15C-2,THE SPAN TABLES.CONNECTION O X 3 UP" •101-1/ 14 •201-45 lie 11 1.06 1.09 11 1900 O 12 130 MPH •101-1s a •201-so 121 a too 1.00 N 1.00 1A0 DETAILS.ANCHORING AND OTHER SPECIFICATIONS ARE W o 140AMPH .701-17 is •301-Se iu tit 09e 096 lg o.9e 0.97 DESCONSTRUED TO BE MARRIED TO CTED HOMES AND/OR MANUFACTURED HOMES AND J c 1151 rw11 .301-20 20 •301 b 11ioA 17 0� 017 1t 092 01e / �f laB tit o90 o.e5 n o92 o.s8-301-16 16 -301-SO MOBILE HOMES CONSTRUCTED AFTER 1984. Note 1: Frarruing systems of screen.vinyl.and glass rooms Iso1 31 1 0.76 1 016 21 017 012 we considered to be main frame resistance canponerMs. I. Wind bads arc Fisted as minus bads for roofs and plus loads THE DESIGNS AND SPANS SHOWN ON THESE DRAWINGS ARE byfor waft. To Cert above wind bads b'C'Exposure BUILDING CODE 2001 EDR10N- BASED ON THE LOAD REQUIREMENTS FOR THE FLORIDA multiply ^` Conversion Table 3A-B WaW Zone Conversions for Over Hangs lit 'i AN Room Types From 120 MVH rima Zone to Others Conversion Table 3C EAL Wind tape Mpa.d toad Deneetioe Bending Conversion Based on Mean Height of Host SHEET { MVMfillStructure for Open Structures w/Solid Roofs 100 30 1.13 1.20 JOB NAME 34 1.06 7.09 From e:peshrn•B'b ez n'C �I s 120 t3 1-00 1.00 swsl Mfkcbon B.narg 123 45 090 10.96 (d) ADDRESS: ( 0 to is-0" 0.94 091 1 130 =o 095 0.93 is-0-ro 20'� 0.92 o.ae i� Yt011 $9 0.91 0.06 W'r to 2s-0' 0.91 O.e6 . /toB 58 0.91 0.85 t Iso t.3W67 0.ao -0089 0.95 O DRAWING FOR ONE PERMIT ONLY 2004 OF 8 lit � lit IF 1'x2'TOP RAILS FOR SIDE WALLS ANCHOR RECEIVING CHANNEL Y x Y OR 2•x3"POST COMPOSITE ROOF PANELS: WITH MAX.3.5 LOAD WIDTH SHALL TO CONCRETE W!FASTENER 98 x 9/16'TEK SCREWS BOTH (4)1/4'x 4'LAG BOLTS W/ RISER PANELS ATTACHED PER HAVE A MAXIMUM UPRIGHT (PER TABLE)WITHIN 6'OF SIDES CHAPTER 7 t f PAN ROOF,COMPOSITE SPACING AS FOLLOWS EACH SIDE OF EACH POST @ 1-1/4•FENDER WASHERS PER PANEL OR HOST STRUCTURAL 24'O.C.MAX. t'x 2-1/8'x t'U-CHANNEL R ON PANEL ACROSS THE FRONT AND 24'O.C.ALONG WIND ZONE MAX.ACWG� SIDES ,I FRAMINGRECEIVING CHANNEL 11. (4)#8 x 12'S.M.S.EACH SIDE _ 100 1 T40' OF POST 110 6'-71 CONC.6 x 62"SOLAB 2500 PSI OR FIBER MESH HEADER ATTACHED TO POST RAIL FOR SIDE WALLS ONLY P R MIN.FRONT 12 5 ° • (ERT TCONCRETEABLE) 130 5-8' 1-1/8'MIN.IN CONCRETE Y z 2"OR Y x 3"HOLLOW WI MIN.(3)#10 x 1-12'S.M.S. WAIL 2 x 2 ATTACHED TO 140 5-1' VAPOR BARRIER UNDER E1" POST W/1'x 1'x 2"ANGLE IN SCREW BOSSES 150 1 4'-71' CONCRETE CLIPS EACH SIDE OF POST ALTERNATE POST TO BASE CONNECTION-DETAIL 1 INTERNAL OR EXTERNAL _ SCALE:2" -0" =t' h RAIL ATTACHED TO POST W/'Ili CLIP OR'U'CNEL IR GIRT AND KICK PLATE Y x Y 2"x Y,2"x 3'OR 3'x2' MIN.(4)#10 S.M.S. HOLLOW RAIL HOLLOW(SEE SPAN TABLES) I° RECEIVING CHANNEL NEL R J ]]1 I GIRT OR CHAIR RAIL AND KICK Y x Y OR 2'x3'POST � FOR SNAP EXTRUSIONS GIRT PLATE 2"x 2"x 0.032'MIN. #8 x 9/16'TEK SCREWS BOTH Z fj. HOLLOW RAIL SIDES MIN. 3)#10 x0III'S.N Z W SCREW BOSSES 0910 �i ANCHOR t x 2 PLATE TO 1 x 2 R 2 x 2 ATTACHED TO z 0 CONCRETE WITH 1/4'x 2-1/2• BOTTOM W/1'x 1'x 2x 1116' (7 C) Cn ANCHOR RECEIVING CHANNEL CONCRETE ANCHORS WITHIN 0.045'ANGLE CLIPS EACH #8 x 9/16'TEK SCREWS BOTH J —' Z J 6OF EACH SIDE OF EACH TO CONCRETE W/FASTENER �. Cn C9 �i SIDE AND MIN.(4)li 12' (PER TABLE)WITHIN 6.OF SIDES 1'x Y OPEN BACK BOTTOM Z W Z _O ' Q POST AT 24"O.C.MAX.R S.M.S. EACH SIDE OF EACH POST P x 2-1/B"x 1'U-C HANNEL R POST ATTACHED TO BOTTOM RAIL O O W `r THROUGH ANGLE AT 24'O.C. I, MAX. 1'x 2"x 0.032"MIN.OPEN BACK 24'O.C.MAX � � RECEIVING CHANNEL W/MIN.(3)#10 x 1-12' � W J W O EXTRUSION S.M.S.IN SCREW BOSSES O Q MIN.3-112"SLAB 2500 PSI ® ® V = m st V)! CONC.6 x 6-10 x 10 W.W.M. CONCRETE ANCHOR J MIN.3.1/2"SLAB 2500 PSI • , �E t/4'x 2-114'MASONRY ER TABLE) } Q p 7L CONC.6 x 6-10 x 10 W.W.M. ° .� 1-1/B'MIN.IN CONCRETE OR FIBER MESH ° 1�/6'MLN EMBEDMENT INTO ` ANCHOR 6- ROM AC V } O OR FIBER MESH VAPOR BARRIER UNDER VAPOR BARRIER UNDER < POST s: CONCRETE CONCRETE CONCRETE Q 0 W Cr) LL POST TO BASE,GIRT AND POST TO BEAM DETAIL ALTERNATE POST TO BASE CONNECTION-DETAIL 2 TYPICAL UPRIGHT DETAIL W 2 8 N s - W o ) SCALE:2" 1'-0" - SCALE: -1.0" S SCALE:Y-1'-0' 2" � O N ALTERNATE CONNECTION- �I (2)#10 x 1-1/2"S.M.S. Iq4; ALTERNATE CONNECTION BEAM/HEADER THROUGH SPLINE GROOVES Q 131 DETAIL t•x Z'WITH (3)#10 x 1-12'S.M.S.INTO EDGE BEAM SCREW BOSS SIDE WALL HEADER 1'x Y OPEN BACK ATTACHED ATTACHED TO 1'x Y OPEN a (2)#10 x 1 72'S.M.S.INTO ANGLE CLIPS MAY BE '- %I SCREW BOSS SUBSTITUTED FOR INTERNAL TO FRONT POST W/ S.M.S. O 41 BACK W/MIN. 2 #70 x 1-112' I IJ _ h #10 x 1-12'S.M.S.MAX.6' o- >e� ANCHOR 1'x Y PLATE TO SCREW SYSTEMS FROM EACH END OF POST h LL CONCRETE W/1/4'x 2-12' i, AND 24'O.C. CONCRETE ANCHORS WITHIN O U Y 6'OF EACH SIDE OF EACH MIN.(3)#10 x 1 12'S.M.S. C �- POST AND 24'O.C.MAX INTO SCREW BOSSco o g� t MIN.3—IW SLAB 2500 PSIo— t•x 2"EXTRUSION SIDE WALL GIRT ATTACHED TO co _��L la CONC.6 x 6 10 x 10 W.W.M. m co 0 x OR FIBER MESH 1'x2'OPEN BACK W/MIN.(3) W>l-W t-118'MIN.IN CONCRETE 010 x t-12•S.M.S.IN SCREW W W g 2•• VAPORBARRIER UNDER BOSSES LL 0'$_ CONCRETE ® V W w a �. ALTERNATE HOLLOW UPRIGHT TO BASE AND FRONT wAll GIRT z N Iw I ® N x HOLLOW UPRIGHT TO BEAM DETAIL W°m SCALE: 2".1'4' a J U t I r HEADER BEAM �i ANCHOR 1'x2'CHANNEL O ® FRONT AND SIDE BOTTOM CONCRETE WITH 4 #10 x 1/2'S.M.S.EACH SIDE O RAILS ATTACHED O 1/4'x 2-1/4'CONCRETE ® OF POST CONCRETE W/1l4'x 2-1/4' ANCHORS WITHIN 6'OF EACH 1"x Y OPEN BACK ATTACHED CONCRETE/MASONRY SIDE OF EACH POST AT 24" H-BAR OR GUSSET PLATE TO FRONT POST W/ ANCHORS 6'FROM EACH O.C.MAX R THROUGH Y x Y OR Y x 3'OR Y S.M.B. #10 x 1-1/2"S.M.S.MAX 6' POST AND 24'O.C.MAX AND ANGLE AT 24"D.C.MAX POST FROM EACH ESD POST 1' WALLS MIN.1'FROM EDGE OF ' 1` MIN. 4 #10 x 12'S.M.S. CONCRETE MIN.3-12'SLAB 2500 PSI Ir MIN. I j CONC.6x6-10x10 W.W.M.OR EACH POST � SEP 0 04 L FIBER MESH ® ® 1'x 2"EXTRUSION HEET K VAPOR BARRIER UNDER • ' .• . •°. 1-1/8•MIN.N CONCRETE 1u, CONCRETE �r ALTERNATE PATIO SECTION TO UPRIGHT AND PATIO SECTION TO BEAM DETAIL TYPICAL S ALTERNATE CORNER DETAIL SCALE: 2'=1'4 07-0B-2004 SCALE Y=1'0" OF .a I I Y i, J W af W o c co c O (n W I � z � W 2 Z ra .. U D- LL Y W O U Q 0 g c �: 1 W co (� U U O 'p " m d . {,n � U �I a r E W s W � _.. J F- CD O o d r4 46 - hoz co ot- -vE aj A VC 3 9 i Y 4J S- O � 'c d O Y Q .� Wor it V U Fas W-- E o � C � ' c� a z CL w o 3 z z # _ rn = s � � — � pp ui z �, a X : m C,� U �. Lu a. ' - CL o x � u. � I o o yh" IFE- al� °r E -jU. Z ISI Z u- b a- � t � I � tuEPW X M ' C it Ck t I` as •- i � w � m s �. LU E32 t W a� C I W Q r+ LL. ❑ rG C t7 r� � D '- � c Li. � I � 00 � E� r r Q to LL c4• 14� T til I I� �. � . �. le uj � O in O C� tsl F- R lu °'. rr W S? LL z -04 x z F- 0 RL im Lit4 � O .� EO-Z r� #i W yE r +� t e+eF LLt a. �a . a U. x La E $ £ � t3 ZOO � Q .IOF" p M � F- zOG -� �' pC '� 1- ap o � o _ Ili O O 'a 'Q 00 LIJ g� j r' OZ ZWw w = p6 � a . t t Qd & .2 .I oLu j L FJ'E f Table 3A.1.2-110 Allowable Edge Beam Spans-Snap Sections Table 3A.1.2-140A Allowable Edge Beam Spans-Snap Sections for Screen,Acrylic or Vinyl Rooms for Screen,Acrylic or Vinyl Rooms For 3 second wind gust at 110 MPH velocity;using design bad of 11 WSF(36 R/SF for Max.Cantilever) For 3 second wind gust at 140A MPH velocity;using design bad of 17#/SF(56 NISF for Max.Cantilever) Alurrrkxem All 6061 T-6 AluMMwn 6001 T-6 F5 x Snaptrusion 'x s nap Load Mac S n V I bonding W or deflection' Load Mas.S •L'! ad W or dafMction' Load Max.S V I W or detraction'it) Load Max. W1 b'or deieclbn' - _ Width pU Spun 4 s Mac widen(n)/i 2 a 4 wletn 1rL) Mu. vnam in) 1i2s a span span til 3s 4s 4s pa Pa Spun pun t i t a Csrdileva pan SP SPse paa � Cantilever Cantilever Carrilever _ S S-7 d T-4 d T-T d 1'-r d 5 6'4' d IV-T d 19-r d 1'-T d S 5-r d 6'-S d S-r d 1'-0' d S r.W d B-6' 0 S-0• b 1'-S d 6 S4' d 5-11' d T-r d 1•-r d 6 T-r d 9-S d 9-T d I'-d 6 +'-11. 0 F-1' d 6'-r b 0.11' d 6 6'-T d Ir-r d T-11' D T1' d 4 7 5'4' d SW d SA" d 1•-1' d 7 r-3' d r-11' d 9-Y b i'S' d 7 4'-6• d 5-S' 6 S-0' b d-11' d 7 6'-3' d T-7• b T-4' b 1-3' d t 5'-r d S-4' d S4' d T-0' d 6 5-11' d S-r d S-6' D 1'S• tl a 4•-5' d 94r d S-4• It 9-10' d t T-W d T-1' b 5-10' b 1'-r d 4'-11' d S-1' d S-3' d O-1P d 0 62" d 8'-3' d S-0• D 1•-4' d 6 4'-3' d s-r D 5'-0• b 7-10' 0 8 5-0' d S-6' b SS' D 1'-r d 10 W4r d S-11' d 9-11' it 0-11' d 10 S-S d T-17 b T-r D I 1'-3' d 10 1 4•-r d +•-11' D 4'-g' It 0-10' d 1 10 S-T d S-M It S-1' b 1'-i' d 11 4'-7' d 1 54' d S4- b 0'-11' d 11 S-3' d 1 T4- b T-3' It I 1'•3• d 11 ?-t1' d C-r b ArT It 0r4r d 1tSS' d S-0' b 5-10' b i'-1' d 12 4'4' d S-r d S-5' b 0-11' d 12 S-1• d T-r b 6`41- b 1--r d 12 T_it• d +t6• p 4'1• b 9A' 0 12 5-2' D S-0• b 5'-7' D T4r d . 2 x4 x0. Asian rx4 x0. "Snap Load maxsPanvi Wort on' toad Max.Span V I bond W or defiec0otrMar- Max. 'tn width 1 i 2 Span 3 Span 4S it Candleva Wfddt(a-)1 i 2 Span a Span 4 Span Cantaaver S 10'r d T-T d T-T it Z4r d 5 r-17 d S-S' d s-r d 1'4' d t 5`4' d T-O' d T-r d 1'•11' 0 64'-11' d S-t' d S-r d 1'4' d 7 SS' d r4' d 5-10' d 1'-10` d 7 4'4S d S`4r d 5-11' d 1'-T d t F-r d Sri' d S4• d TO d 6 4'r d S4' d S-r d 1'4' d 0 4'-11• d S-r d 63' d 1'-0' d t 4'-3• d W-C d SS• d 1'S' d 10 4'4' d 5-11' d S-0• d 1'-r 0 10 4'I d S-t' d 5-7 d 1-6' d J it W_r d S4' d 5-/0• er r-r 0 it 4'�• d 4'-11' d S'-T d 14' d Q I li 12 4'4' d S-T d S-6' d t'S d 12 7-1T d 4'-10• d t-1T d 114' d Notes, Nobs: Z . 1.Atxtra soars do not fickrda d knee brain.Add horizontal dater tom updpM b cenler of bra=b bean corwedion L Above spars do not fickrda b One above spas for bd Dearn spas. _ W VM of knee We=.Add heritorttal d�kom up 19 b Denier of bet=b beam W corxractiorr b the above spans for total Deem span. 0 2 Spuns may be interDoWed• 2.Spas may los interpolated. 0 Z 0 W (D V Cr) Table 3A.1.2.120 Allowable Edge Beam Spans-Snap Sections _JfA (7 Z W for Screen,Acrylic rlr Vinyl Rooms Z W Z O J For 3 second wind gust at 120 MPH velocity;using design bad of 13 WSF(43!/SF for Max.Cantilever) !-. CO ANarman 6063 T4 W J H Extnalon W e 4 na true an Ujmet tQ Load Max,6 an'L'/MMIn 'b'a dr4leetion' Load Max. 1'/ f T'or dsaae0on' C oda' ') 1 i 2 s a span 4 Spat MOL Cantilever Wkftlt�')1 i 2 spa 3 span +span CaMes'nWover —i )... Q O Z 94• a r4• r San Yutr n i s s4• d r4- er r-r d r-r d s r4• a d 94• a p Q. C) _ NO 6 5-' d s-7' d 6'-9' d 1•4• d 5 r-r d e'-11' d 9-v D T-S' d 7 S-1' d S-3' d S-S' d 1•-0' d 7 r-17 d r-S d r-4' It 1'4' d Q O I 4'-17 d r4' 0 S-I' b 0-11' d 7 S-r d r-1' d 7'-10' b T4- dJ W 6 C4' 0 S-9' d S-9' b (Y-11' d S 6'4' d T4• b T•4' b i'-3' d Z U) LL co 70 +'4' d 5'-r d S4' b 0-1/' d 10 5-1- d T-3' b r-11' b 1'-3' d W tT '. 11 C•4• d SS' b I V-r b 0-17 d 11 5-11' d 541- b r4- b 1'-2' d W 5 O 12 4'S d 5*-- 0 4'•11' It 0-17 d 12 5'-9' d W-7- b rS' It 1'-r d Z N x z V Load Max.S T/ V or dnlNetloo•dri (n Width(a-i 1 i 2 Span 3 Span 4 Span CaNUM D ndover J S 94' d T-1' d r-2• d 1'47' d Q It S•+' d r4' d 6'-9' d 1'-1(r d 7 5-1• d Sd' d r-5' d 1'A• d a 4'-11' d S-0- d S-r d /'4- d a 4'4- d s-10' d 5-11' d 1'-r d Z W 10 4.4" d SP-7'-7' d 5'4' d 1%r d 1 4' d '-5• 5'4' i'$ d N 1 S 5 d d J� 12 4•-3' d 5-3' d 5'-4 d 1'S- d a H LL Notes: 60 1• I 1.Above sports do not Wxiude length of knee brain.Add horimnW distance from upight to center or brain to beam correction - ta b pe Do above on for We!bean spans. Co OF A 2 Sports maybe interpolated. Q? tu O g m ee�ri� Table 3A.1.2-130 Allowable Edge Beane Spans-Snap Sections for Screen,Acrylic oiVinyl Rooms For 3 second wind gust at 130 MPH velocity;using design bad of 15 6/SF(50 WSF for Max.Cantilever) W _5 0z Aluminum 6063T-6 LL 2 x x s x on V �WLL Lob Max.Span 1'f b'or delAeetlon' Load Max.Span 1'I Thendn •b'or delleetbn'cn W�- Y.. Z N ty vrtd6t W) 1 i 2 span 3 Span 4 Span Cattawer Width(R)t i 2 Span 3 Span 4 Span Carni t7 ~ S 5-S d 6'4' d 5-17 d F-i' d s r-4' d 9-0' d 9-r d 1'-S d yzj m 6 5-T 0 S-4' d S-S d 1'4T d 6 547 d r4' d Ir-S' It 1'4- d _ J O 7 4'-17 d 5-11' 0 S-I* b 0-11' d 7 64' d r-t' b T-9' D 1L' d CU I 4'4' tl S$ 0 54' D 0-11' 0 • rJ' d T4' It T-3' It 1'•3' d J t 4'-S d S4' 0 F4* b 7.11' 0 S SA' d T-1' It 6'-17 It 1'-r d ' 10 4'4• d S-3' It 5-1' b 0'-17 d /0 5-17 d S-9' D r•S 0 1'-r d 11 4'-2' d 94r D c-17 b 7-17 0 11 s-T d r-5' b S-3' It i'-t• d 12 4'-1• d 4•-17 D 4'4' It 0'-17 d 12 5-S 0 1 r-r b 15-11' 6 1'-t' d j Xr: on Load Max.Span IV:/IMrtdfig'b'or d"ow bon' Width(') 1 i 2 Span 3 Spun 4 Span Cmtbw r S 9-3' d S-9' d 6'-17 0 1'-17 d o SP 6 S-l' d r-• d S-S' d T-9' d �. T 4'-77 d S-7 d r-r d 1'4' d EAL a 4.4- d 5'-0• d 5-17 0 t'-r d s 4.4• d SW d 54- d 1'4' 0 $HEFT to +1" +•d s. d s-s a rs e It r-r d T-r d S-3• 0 1'S' d 12 4'-1' d S-0' d 5'-1" 0 Notes, 1.Above spans do not vxiude length of knee brace.Add ItormonW dnbnce from upright to corder of brace to bean conneedon to the above spans for WW beam spane. { 2. Spans may be interpolated. i 07-06-2004 OF Table 3-12.1 Allowable Upright Heights,Chale Rail SW ns r Header Spans Table 3A.3 Schedule of to Beam Size and Number of Th ru Bolts Required for Screen,Acrylic or Vinyl Rooms Aluminum Alloy 6063 T4 Aluminum Alloy 5063 T4 #Thn"kft For 3 second wind gust at 110 MPH velocity;using design load Oil*SF exam Stu Mint S m post in L�W1r Minimum MWOK Knoo Tributary toad Width W a PurM�Spacing Post Ska Post Sits 1N'a 3Ma Knse Brace Brace Sections 7'4' 7'd' 4'4' 4'4' S'4' .Sri' 6-0" S-r T-0' Ti' r x r x SAW Hollow 3'x 3"x 0.003' ?x 3'x 0.050' 2 ?x T x 0.050' 18 .AhowaMt Haight N I boo it" Wor deMctiort Sep ataftig Beams 2'x r x 0.044" Hollow 9-S" b 6-9' b r-? b I rd' b ri' b 6-i t'b 6d' b 6-5• D 6.2' b 5-11'b r x r x e.CW x O.IW 3'x 3'x 0.003' ?x 3'z 0.050' 2 2 x 3'x O.O5rE14)#14 2"x Y x 0.055' Hollow 10'-3"b 94' b 6-1t'b 6S b T-11•b T-T b r-3" D 6-7 P b 6-r b 6-6' b 2"x ti"z 0.050'x 0.100' 3'x 3'x O.W3' ?x 3'x 0.050' 2 - ?x 3'x 0.050'3"x r x ttow Houaw 1/'-3'b 101-5'b 9-ff b 9.3' b 6-9' b 64' b T-11'b r-4• b T-5 b r-? D 2'xrx0.050"xoi20" 3'x 3'x 0.093• 7x3•x0.050' 2 - 2•x 3'x 0.050"3"x r x 0.070' Hollow 17.9'd 17-7 d 11'-T d is-11'b is-5'ta g-11'D 7-8' D 9'-7• b 6.10'b 6.6' b rxT'x0.055'xO.12r 3'x 3'x 0.093' ?x 3'x O.O5T 2 2 7 x 3'x 0.0572•x r x 0.015' Hollow /Y-9•b t t'-V b tt-7 b to-S D 9'-17 b 7.5' b 6-11"b 8'-8' D 6.4' b 6-t' D r x 7'x 0.055'vd invert 3'x 3'x 0.093' ?x 3'x 0.057 2 2 ?x 3•x 0.057r x 4'x 0.050' Hollow 163'b 15'-7'b 14'-1'D 13'•3'D 17-T b 17-0-b IT-Ir D 1v4r b 1014'b 1013'b rzrx 0.07r x 0.221' 3"x 3'x 0.093' ?x 4-x 0.057 3 2 ?x 4'x 0.050"r x4"x 0.046• S.M.B. 19-1'b iT4'b 18'4-b 15-r b 14'-r b 1P-1'b 13'4-b 17-11'D 174'b 17-7'b r z r x oA7r x 0224' 3'x r x O.Ogr ?xSx0.057xO.1(r 3 3 ?x S x 0.050'x 0.1072"x 5"x 0.050' S.M.B- 23'-r D 21'-10-b 2015'b 19.3'b 16-3+b 1T-5'b 164'b w4r b 15.5"b 14'-11'b rzrxoAsrx0.306- 3'x r x 0.125 ?x S x 0.057 x 0.127 4 3 ?xSx 0.057 x 0.120'2"x 6"x 0.050" S.M.B. 26-1'b 24'-7 b 27-r D 21b201-?b 19-3'b 16-5'b iT-!T b 1T-t'b 164'b 2'x1rxOA9Yx0.369' 3•z 3'x 0.125 ?xTx0-055'x0.127 S 4 ?x T x 0.055 x 0.127 2"x r x 0.044" Snap 11'3'b 101-5'b ff-r D 9-? b 6d' D 37.3. b!r-i P D T-7' D T4' b r-7' b Double Sop Ma Beams { 2"x r x 0.045 Snap 144'D 13'4"b 17-5 D 11'-r b 11'-?D 101-T b ta,Y b 1 bj 9-5- bi 9-1' tr (2)r x r:OAJr z 0224' 2•x S x 0.057 x 0.107 - 8 4 ?x 4 x 0.044'x 0.107 (O 114 €9 2"x 4"x 0.045" Snap 1T•T D 76-3'b 15'3'D 14'-4'b 13'-T D 17-17'b 775'b 11'-11'b IT-6-D 17'-1'D Y x r x OAT2'x 0224' ?x 6'x 0.057 x 0.120' 8 4 ?xSx 0.050'x 0.727 O 111 For 3 second wind gust at 120 MPH velocity;using design bad of 13 WSF (2 r:r x 0.962'x 0.304" r x r x 0.055•x 0.727 8 8 ?xSx 0.057 x 0.127 111 T Load Wi�hW•PurOn rxtrx 0.09r x 6.36r ?x 5x0.07?x0.224' - 10 B ?x T x 0.055 x 0.127 10114 '.,. Sections 3'-0" 3'd" /'-0" rd- 5'4' S4' S-0• FgbV-Zr- Mr-Itr The minimum number of 0w bolts is(2) Alterable 4f I V or deflection 'Mininxat pmtI beam maybe used as minimum knee brace 2"x Y z OA44' Hollow 6d' b 6-0' b T4' b r-t' b 6-S b 6-S b 64• b F-1 r x r x 0.055 Hollow 7-5' b 6-7 b 6-? D T-9' D RP b 6-11'b 64' b 6-53'x r x 0.wr Hollow ta5'D 7-T b 6-11'b 64' b 6-0' b T4' b T4' b r-13'x r x O.07r Hollow 17-1'ci t7'-5 b t01d'b 19-1'b r-T b 9•r b 6-r b 8'-S Q r xr x OA4r Hollow 17-17 b i t'-t V b 11'-?b 101.6'ta F-11'b 94• b 9-1' b 6-0• b 65' b O'-r b D r x 4"x O.osr Hollow 14'-11'b 13'-77 b 17-11'b 12,?b 11'-r b 11'-7 b to-r D /o;r b g-9• b r5• b C� Z 2•x 4•x O.O4r S.M.B. 1r4'b 16.5 b IS'-r b 14'4'b 13'-7"b 17-11'b 17-5"b ii'-1YD 1T4'D IVA'b c Q tL 2'it 5 x 0.050* S-M.S. 21'4'b 201-1'b 1649 b /r4"b 16-17 b 16-(r b 174'b IW4r b 1r-r D t3'-r b O 2 p 2'x r x OAsr S.M.B. 23'-11'b 27-?b 201.8 b 19-T D 16-r b 1r-r D 16-1l'b 16.Jr b 164'D 15'-?b Z O 2"x r x OAM" Snap ta4'b 9-r b 8'•71'D 65' 0 T-tt'D T-r D T4• b T-0' b 6-r b 64• b Z-x 5 x 0."5- Snap13'3•D 173•b 71'5'D to-ff b 7013';9-W D 94' 0 6-t'I•b O'4• b O'4' b J - Z r x 4'x oA4r Snap 78'-?b 14'•1l'D 14'4'b 13'-?b 174'D 11•11 b 11'5 b 101-11'b ta-T b tai'D Z W Z Q J Notes Q - f- CD 1.Above spam do not kxxude length of knee brace.Add horizontal distance from upright to center of bran to learn connection to the 0 - Q above spans for trial beam spam. 2. Scans may be wterpdaled. 06 W j W U COm .4 Table 3A.22 Allowable Upright Heights,Chair Rail Spans or Header Spans } U O N Q fAorS�creen r Vinyl Rooms Q O Q U For 3 second wind gu at 130 MPH ;using design load of 1S WSF H J cc W '., Tributary Load Width W. Z CO LL G (n sectlons 3'-0" 3'4• 4'4' rd• 5'-0" 5'4' 6d" F. T-0' T4' W AltowabN Haight'H'I bendkill W or ' W 5 0 r x r x ti ow Hollow113-4 r4' b 6 11 b 6-r b 63' b 9.11'D S4' D S-0' b 5'-3' b 5-i' D Z_ (V 2^z r x OASS Mellow S-? b T r b T-? 0 6-17 b 64' D 6-3' b 6-TPD 5-r D S-T D 1"x r x 0.04r Hollow 6-1 T b 64' D T-11'b r4r D T,? b 6-17 b 6-7• b 64' D 6-1• b " rx OA70' H 101-8'b 9-11'b 9-S D 6-11'b 64' b - D T-iir b T4• b T3' b J •x to-1•b 95' D 6-11'b 6-5' b 6-1' D -0' T.5' b r-? b 6-11•b Q 2's 1'x 0.0 7Y-11'b 12-1'D 71'-4'D 101-'D tai•D 9-7 D 9-S' b r•Y D 6-17 b rx 4"x CAW S.M.B. t5'-T b 14'-T b 134•b 17d•b 17-1'b 11'4•b 11•=I"b 1014- b ta-P b rx rxo.osr S.M.B. 164'b ir4'b 164•b 154'b 14'-11'b 14'3•b 17-ir b 13'3'b 121-9'b rxrzOA5r S.M.B. 274'b tad•D 19'4'b 163 b tri'b 16-5 b 15'4'b 1S--;r b 1r-r b 14'-1'b r a r x 0.044' Sna V-7- b 6-11'D O'4' D T-17 b r-5 b T-1• b 6-7 D 64' b 6-3• b 6-7• D UJ r x r x OA45" Sns 174-D i i'S b 101-0'b 1 101-1•D I 94• b 1 9-11- b I r4r D 1 64' b 6-1• D T$ b <N r x 4"x 0.045 Scup 75-1'D /3'-11'b 13'-0-b I 174-D 1 11'41'bl 11'-T D I lad'bi ia•I'b I 9-17 D 9--V pNj For 3 second wind gust at 140A MPH velocity;using design bad of 17 WSF r�r in LL j147- Load WWM W•PuAln Spoci O< Sections 31-W Yd' 4'-0' 4.4' S4' Sri' 64'1 bar Td' T4' C V Z Y Allowable Hwightt 14'I 'b'or deflection O r� 2'z r x OAM' HdlowT-r b T4• bi 6-r D 6-7 b F-17 b S-7- D 54- b 5,2• b 4'41•b 4'-9" Dtu r x r x O.9sr Hollow 6.3' b T4' b r-? b 6-r b 65' b 6-1• b S-17 b S`-?' D S-5 b 53' b 3"x r x o.o4r Hollow 9'-1' b 6-S b r-17 b T-5 b r4r b 6d' b 6-5" b 6-2' b T-11'D 6A• b m 40 O 3•x r x oA7r Hollow 101-17 b l(Yd'b 94' b 6-17 b 6d• b T-11'b Td' b T4' b r-1' b 6-17 D Y x r x OATS Hollow 17'3'b las'b ff4' b ff-9-2* D 6-6• b 64' b T-11'D Td' D T4ft O til 0)' D T-t• b 1y Z 2•x 4'x 0.050' Hollow 73'-1"b 77-1' b 11'4'D ta4•b 101.1'b rd- b 9-3' b 6'-t'"b 6-7- b 63' b Uj J O g O v r x r x ii cw s.M.B. 15'4'b 14'-?b 73'•3-b 174"b 11'41-b 11'1•b 101-101'b 101;'r b 1014- b ffd' b (v LL a r x 5 x OA50• S.M.B. 18'-11•b 1T-T b 16-5'b 154•b 14'4•b 14*-W b 13'-5 b 17-11'b 7F-5b 11'•11'b V W v u- r x r x 0.050" S.M.B. 201-11'b 795'b /6-Y b 1r-1'b 163'b 15'4-b 14'-17 b 14'-<r D 13'-9 D 13'3'D Z tv W 2"x r x DAM' Snap 9-0• b 64' D T-17 D T-4' b 6-11'D 6d' b 65' b 6-2' b 5-11'D 5-S b - X F 2'x 3'x 0.045'• Snap I 1 t'•r b 10'd• b I 101-0-b ff-S 6 6-11'D 64' D 6-? D T-1(r b T-r bl r4' D = 12 m 2'x 4•x 0.015 Snap 14'-?D 73'-1'b 1Y-3'b 11'-T D 101-11"b 101-5 b 101.0'b 9-7' b 9-3' ta r-11'b 5� Notes: d i, I.Above spans do not include length of knee brace.Add horizontal distance from upright lo center of brew to teem connection to to J above spans for total Doan space. I 2. Spam may be"arpolated t 14 SEAL A SHEET r - 3 07-08-2004 OF 8 REMOVE VINYL SIDING AND SOFFIT ON THE WALL AND INSTALL SIMPSON CS-16 COIL STRAP OR EQUAL FROM TRUSS I RAFTER TO BOTTOM OF DOUBLE TOP PLATE JOIST EACH TRUSS/RAFTER THE FLOOR,WALL,AND ROOF SYSTEM ARE THAT OF MOBILE THE FLOOR,WALL,AND ROOF I MANUFA=CTURED HOME STUD WALL OR POST SYSTEM ARE THAT OF MOBILE INTERIOR BEAM(SEE TABLES MANUFACTURED HOME — 3A.1.3) ILI • KNEE BRACE(SEE TABLES //- //.�//, /� -• e: e. //�//.�//. BEAM SPAN ` 3A 3) 12" A • USE W2 �c e eTz' FOR BEAM SIZE) POST SIZE(SEE TABLE 3A.3) THE FLOOR,WALL,AND ROOF MAX.POST HEIGHT(SEE NAIL STRAP W/16d COMMON SYSTEM/AE THAT OF MOBILE \ //�//�//�/// SEE INTERIOR BEAM TABLES TABLES 3A 2.1,2) �• � AFTER COMPUTING TRUSS RAFTER AND /MANUFACTURED HOME PERIMETER JOIST x LOAD WIDTH' SCREW COIL STRAP TO INSTALL NEW 411'OR 60" Q SHEATHING W/#8 x Y DECK AUGER AVCHOR PER RULE SCREWS 16'O.C. RIBBON FOOTING •LOAD WIDTH IS 1/2 THE DISTANCE BETWEEN N Z VERTICALLY 15C @ EACH NEW PIER. SCALE: 12'=1'-0' SUPPORTS ON EITHER SIDE OF THE BEAM OR O 0 REPLACE VINYL SIDING INSTALL 11r CARRIAGE BOLT SUPPORT BEING CONSIDERED ROzo STRAP TO NEW AUGER PERIMETER JOIST AND Minimum Ribbon Footing TYPICAL SECTION"FOURTH"WALL FOR ADDITIONS STcn ANCHOR vow sr = neat s�• ADJACENT TO A MOBILE/MANUFACTURED HOME - �0 Z zme s Ft 4M o a Anginas too-t23 .+o -u ra nsu w svt 3r o.0 SCALE: 11V-T-Cr Z 0 Z H +30-t4a ,30 -t> ra ABU u sPt 3r LLI t4oe-tw .30 -zo t 3• ASu44 spt+a 4e•0.C. Extrusion Sizing Table: 08 W J Q PROVIDE NEW 4.6"OR Maxemxn IT pro)ecfott kom hose sWeare. LI 8•x 16"CMU PIER AND SOLID upright SM Max.Mex Beem Sin Knee Brace (� m 0 � FOUNDATION BLOCK SLID •For sad waft use Vr x r L-Bofs a 4S•O.C.o.C..m r sgwn wean«=a u over sow pak 9 r x r x o.a3r r x r r x r x o.o3T } � Q O Z fools sad andtois stwf be at the sok pMa only and coil adW shad tap ow tha top ptaa MAX.O.C.ALONG on b the studs antltors and straps shat be per mwmftdwen speafeafar. r x r x o ow r x r r x r x o.osv Q, V Q (y O ATTACHMENT WALL r x r x o.otw• r x r s.M s. 2x r x 0.05[r D om } M- rxrxo.wr rxrs.wa rxrxo.osP Z O cUwiJ rx7x0.12V rx9•SAA rxrx0.09rLL TYPICAL WALL SECTION FOR ATTACHMENT TO 4•x4•xo.+2r rx+o sMe. rxrxo.+2s W g o MOBILE/MANUFACTURED HOME W Z N V — D REMOVE VINYL SIDING AND REMOVE VINYL SIDING AND J SOFFIT ON THE WALL AND SOFFIT ON THE WALL AND Q INSTALL SIMPSON CS-16 COIL INSTALL SIMPSON CS-16 COIL STRAP OR EQUAL FROM STRAP OR EQUAL FROM TRUSS/RAFTER TO BOTTOM TRUSS I RAFTER TO BOTTOM OF DOUBLE TOP PLATE JOIST OF DOUBLE TOP PLATE JOIST UJIz N EACH TRUSS I RAFTER @ EACH TRUSS I RAFTER a THE FLOOR,WALL,AND ROOF THE FLOOR.WALL AND ROOF y J SYSTEM ARE THAT OF MOBILE + O a THE FLOOR,WALL AND ROOF SYSTEM ARE THAT OF MOBILE N U THE FLOOR WALL AND ROOF /MANUFACTURED HOME ► Y SYSTEM ARE THAT OF MOBILE /MANUFACTURED HOME SYSTEM ARE THAT OF MOBILE c: W} /MANUFACTURED HOME /MANUFACTURED HOME N IL " m m w On- NAIL STRAP WI 16d COMMONp w,° ®TRUSS RAFTER AND W J WO to p` PERIMETER JOIST tv U- za a SCREW COIL STRAP TO W a'w' SHEATHING W/08 x V DECK SCREWS 16'O.C. THE FLOOR,WALL.AND ROOF ?t< WALL,AND ROOF @ t7 I � THE FLCtOR, L. NAIL T SS 16d COMMON AND SYSTEM ARE THAT OF MOBILE VERTICALLY SYSTEM ARE THAT OF MOBILE PERIMETER JOIST I MANUFACTURED HOME REPLACE VINYL SIDING /MANUFACTURED HOME M SCREW COIL STRAP TO KNEE WALL WI 2 x 4 P.T.P. J o a SHEATHING WI#8 x 1'DECK INSTALL NEW 48'OR 60' SCREWS 16.O.C. AUGER,4NCHOR PER RULE BOTTOM ALA STUDS b VERTICALLY 15C EACH NEW PIER DOUBLE TOP PLATE REPLACE VINYL SIDING INSTALL 112'CARRIAGE BOLT r'V BOLT @ 3r O.C. NAIL PER TABLE 2306.1 THRU PERIMETER JOIST AND FLORIDA BUILDING CODE STRAP 1'O NEW AUGER EACH STUD SHALL HAVE A ANCHOR SIMPSON SPA OR EQUAL SHEATH W/112"P.T.PLYWOOD NAILED W/#8 COMMON 6 O.C. TYPE 111 FOOTING OR 16•x 24' EDGES a AND 12'O.C.FIELD OR ALTERNATE RIBBON FOOTING W1(2)#50 4"x 4'P.T.P.POST W/ BARS,2.500 PSI CONCRETE STRUCTURAL GRADE �, SIMPSON 4'x 4"POST THERMAL PLY FASTENED PER BUCKET INSTALLED PER THE MANUFACTURERS SHEET MANUFACTURERS SPECIFICATIONS j SPECIFICATIONS TOP b STRAP SIMPSON COIL STRAP BOTTOM OVER SHEATHING ALTERNATE WALL SECTION FOR ATTACHMENT 70 ALTERNATE WALL SECTION FOR ATTACHMENT TO MOBILE!MANUFACTURED HOME MOBILE!MANUFACTURED HOME 07.08-2004 OF $ SCALE: 114•=1'l)' SCALE: 114"=1'-0' 1 i (SOLIDI ROOF PANELS(COMPOSITE OR PAN TYPE) FASTEN PANELS TO EDGE BEAM (PER DETAILS IN SECTION 7 AND I OR ) 6•MAXIMUM IF KNEE BRACE LENGTH EDGE BEAM TABLES: EXCEEDS TABLE 1.7 USE 3A.1.1,2 CANTILEVERED BEAM ~ CONNECTION DETAILS LL.. SCREEN OR SOLID WALL -i W�a,_5 Z POST SELECT PER TABLE 3W.3 (MAY FACE IN OR OU ¢ USE 2 x 3 MINIMUM OUT) �T�] �w 1 K F- W HOST STRUCTURE ROOFING _ KWNZ Y STRAP-LOCATE @ EACH =2 K W T 114' 2'LAG 0- SCREWS Q 24.0.C.(MAX) EACH STRAP (2)#10 x 112'SCREWS J Q USE ANGLE EACH SIDE FOR D 2 x 2 TO POST CONNECTION WITH HOLLOW POST O 0 114-BOLT @ 24-O.C.MAX 0 Z O WITHIN 6.OF EACH POST Q' FASTEN 2 x 2 POST ® } 0 Z J W/(2)EACH#10 S.M.S.INTO ® Z w Z O Q SCREW SPLINES ( ; cl - I- W 2"x 2'x 0.062'ANGLE EACH ( ®® EXTRUDED ej) W j W 0 SIDE(3)EACH#8 S.M.S.EACH ORS MAX.DISTANCE TO �c Q LEG INTO POST AND INTO co ( ® GUTTER HOST STRUCTURE J m GUTTER(MIN.) WALL 36•WITHOUT } } Q O Z FASCIA AND SUB FASCIA SITE SPECIFIC V N O ENGINEERING U = } t- EXTRUDED OR SUPER GUTTER/RISER Zg (OR TRANSOM)WALL 0 FASCIA(WITH SOLID ROOF) SCALE: 2"=1•-0' W 5 C WAN - ---------- J U) Q ROOF PANEL (SEE SECTION 7) W N BEAMS MAY BE ANGLED FOR 0. M GABLED FRAMES _ c ANCHOR PER DETAIL FOR PAN H OR COMPOSITE PANEL , FOR NUMBER OF BOLTS AND U Y SIZE OF POST(SEE TABLE Wo BEAM AND POST SIZES 3A,3) <r, (SEE TABLES 3A.3) ' n 1•x 2'MAY BE ATTACHED FO2 m POST NOTCHED TO SUR SCREEN USING(1) W 0 #10 x 1-112• @ 6'FROM TOP LL1 J H p" AND BOTTOM AND 24'O.C. (D LL W ww SIDE NOTCH POST TO CARRIER BEAM CONNECTION 2 SCALE: T-Y-0' O OX wm - ---------- c �o m w ROOF PANEL (SEE SECTION 7) 1-314'x 1-314'x 0:063' - RECEIVING CHANNEL THRU - - ----- ANCHOR PER DETAIL FOR PAN BOLTED TO POST Wl THRU ( ® - o OR COMPOSITE PANEL BOLTS FOR SIDE BEAM _ (SEE TABLE 3A.3 FOR NUMBER ( ® FOR NUMBER OF BOLTS AND s OF BOLTS) I ® - SIZE OF POST(SEE TABLE - BEAM AND POST SIZES IE� (SEE TABLE 3A3) --� 1'x 2'MAY BE ATTACHED FOR SCREEN USING(1) j o #10 x 1-lir Q 6'FROM TOP POST NOTCHED TO SUIT AND BOTTOM AND 24'O.C. CENTER NOTCH POST TO CARRIER BEAM CONNECTION SCALE: 2"=1'-0' 1 07-08-2004 OF 8 General Notes and Specifications: INDUSTRY STANDARD ROOF PANELS 1. The following attachments are designed to be married to dock and wood frame structures of adequate structural capacity.The contractor I home owner shall verify that the host structure is In i- EXISTING TRUSS OR RAFTER 6'x r x 6'0.024'MIN.BREAK good condition and of sufficient strength to Aoki the proposed addition. h W FORMED FLASHING 2. If there is a question about the host structure,the owner(at his own expense)shall hire an a architect.engineer,or a certified home inspection company to verify host structure capacity. > - 3. Roll formed roof panels(pans)are designed for uniform loads and can not be walked on unless 1 PAN ROOF PANEL plywood Is laid across the ribs.Pans have been tested and perform better in wind uplift bads Clan 4 12.00' live dead load+ e bads.Spans for pans are based on deflection of U80 for high wind zone criteria. (2)#10 x 1-1/2'S.M.S.OR 4. Composite panels can be loaded as watt on or uniform bads and have,when tested performed 12"WIDE X VARIOUS HEIGHT RISER ROOF PANEL Wppp SCREW PER RAFTER z a N well in either test.The composite panel tables are based on bending properties determined ata SCALE 2'=1'0' OR TRUSS TAIL _a _ = a deflection limit of U180. --- ALTERNATE: 5. The following rules apply to attachments involving mobile and rnarx>kcMad horses: #10 x 3/4'S.M.S.OR WOOD e - a. Structures to be placed adjacent to a mobile/manufactured home butt prior to shat 1994 use $ SCREW SPACED @ 12' 'fourth wan construct1W or shag praAde detailed plans of the motile/manufactured home O.C. along with addition plans for site specific review and seal by the engineer.This applies to all EXISTING FASCIA screen I glass rooms,and/or other structures to be attached. 12.00' b. For mobile I manufactured homes butt after 1994,structures may be attached provided the project follows the plan for attachment of this manual.The contractor!tonne owner shat 12"WIDE x 3"RISER INTERLOCKING ROOF PANEL POST AND BEAM(PER provide verification of the structural system used b build Cha host structure. SCALE: 2"=1'-(' TABLES) 6. The shapes and capacities of pans and composite panels are from'Industry Standard'shapes. J except for manufacturers proprietary shapes.Uniesmamufacaxa of the product is known, s Che Q use the*Industry Standard Tables for allowable span. g in Z a screen room b a room or b a ,the roof must be IT ALTERNATE MOBILE HOME FLASHING W T. When converting glass capon garage O torr the erwlosed 0 checked erne reinforced building requirements. FOR FOURTH WALL CONSTRUCTION R O � 12.00- � z O a. When using TEK screws in lieu of S.M.S.longer screws must be used to compensate for drill PAN ROOF PANELS C C9 U head. CLEATED ROOF PANELSCALE: 2"=t'-0' J CO Ur Z J } 9. For high velocity hurricane zones Cha mkhimuan We bad I applied bad shat be 30 PSF. SELECT PANEL DEPTH FROM SCALE: 2'=1'-0' ALUMINUM SKIN Z LU INSTALLATION INSTRUCTIONS: z 0 Pi7_ 10.Interior walls a callings of composite panels may have 1/2'sheet rock added by securing tl» TABLES E.P.S.CORE J t7 W sheet rock wI 1'fine thread sheet rock screws at 16'O.C.each way. A. PLACE(2)BEADS OF CAULKING ON BACK SIDE OF HEADER BEFORE INSTALLING. oil) W W j o €!(( 11.At fascia gutter end caps shall have water relief ports. j4 not outside values Z a SIDE CONNECTIONS VARY B. SLIDE 1'TAB AT TOP OF HEADER UNDER DRIP EDGE DO NOT PUSH DRIP EDGE UP. J ,Q p0 Z 12. Spans may be interpolated between values but extrapolated w DRIP EDGE MUST MAINTAIN SAME PLANE AS SLOPE OF ROOF. } ar o (DO NOT AFFECT SPANS) C (� C N iii 13.Design Check List and Inspection Guides for Solid Roof Panel Systems are included in ispection guides for sections 2,3A a B,4 a S. Use section 2 inspection guide for solid rod in Section 1. C. FASTEN HEADER TO FASCIA BOARD WITH#10 x 1'SCREWS 6.O.C.STAGGERED C O 48 (SEEQ (� TOP AND BOTTOM DETAIL ABOVE) J W .00' : F- - 14. All exposed screw heads through roof panels into the roof sub structure shat be caulked w/stucah CO LL M sealert COMPOSITE ROOF PANEL[INDUSTRY STANDARD] D. PLACE PAN ROOF PANEL INTO HEADER AND ATTACH TO 4TH WALL POST AND BEAM Section 7 Design Statement SCALE: 2'-1'-0' SYSTEM ONLY. DO NOT ATTACH TO HEADER. HEADER IS USED AS FLASHING ONLY. W p Z (V The roof systems designed for section ms anro n 7 are Main Wind Force Resisting System Components arxf COMPOSITE ROOF ANCHORING DETAILS ro Cladding.In conformance with the 2004 Florida Building Code such systems must be designed using bs ads for components a cladding.TM ,section 7 tees several different categories d these loads as PAN ROOF ANCHORING DETAILS J ( described below.At pressures shown in the table below are in PSF(#/SFJ #8 x 1/2'S.M.S.SPACED Q EXISTING TRUSS OR RAFTER -Q @ 8'O.C.BOTH SIDES CAULK 1. Free-standing Structures with Mono-sloped Roofs with a minimum We load of 10 PSF except kr ALTERNATE CONNECTION: ALL EXPOSED SCREW HEADS 1408 and 150 MPH loads which are 30 PSF.The design wind bads used are from ASCE 7-98 Section (3)#8 SCREWS PER PAN WITH SEALANT #10 x 1-1/2'S.M.S.OR WOOD 6.5,Analytical Procedure.The bads assume a mean roof height of less Chap 30;roof slope of 0'to 101; 1'MINIMUM EMBEDMENT INTO WOOD SCREW(2)PER h- 1=0.77 for open structures a 1.00 for a8 others.Neganve Internal pressure coefficient is 0.18 for FASCIA THROUGH PAN BOXED HEADER(SEE NOTE BELOW) RAFTER OR TRUSS TAIL. ', W e ti enclosed and 0.55 for partially enclosed structures. END �- #10 X 314'S.M.S.OR WOOD a p 2. Attached Coven such as carports,patio covers,gabled carports,and screen rooms with a EXISTING TRUSS OR RAFTER w - SCREW SPACED 72'O.C. o- ROOF PANEL ?ua minimum live bad of 10 PSF except for 1408 and 150 MPH bads which are 30 PSF.The design wind +-. O O'T a °oY _ w \ r. • +_ x11 U .Rod d D'b 25 ! 10' 1 #10 /2'S M S. 2 PER EXISTING FASCIA C bads used are from ASCE 7-98 Section 6.4,Analytical Procedure slope ( }: ( ) a o ROOF PANEL � i�m 1.00.Negative internal pressure coefficient is 0.18 for enclosed and 0.55 for partially enclosed RAFTER OR TRUSS TAIL __ ROOF PANEL TO FASCIA DETAIL w o^m structures. #10 x 314'S.M.S.@ 12'0.C. #8 x 112'S.M.S. 3 PER PAN SCALE: 2'-I-(r (� CD " 3. Glass a Modular Rooms design bads use a minimum We bad of 20 PSF and wind bads are from Q\ (BOTTOM)AND(1) RISER EXISTING HOST STRUCTURE r" w j ASCE 7-98 Section 6.5.Analytical Procedure and the 2004 Florida Bualdag Code.The loads assume a EXISTING FASCIA R�CAULK ALL EXPOSED WOOD FRAME MASONRY OR #6 x 1/2'S.M.S.SPACED k t>u Z mean roof t of peas that 30;rod slope of 20'to 30'(+/-10');I.1.00. SCREW HEADS OTHER CONSTRUCTION A 8'O.C.BOTH SIDES CAULK J O O. �9h � ALL EXPOSED SCREW HEADS N u• ROOF PANEL TO FASCIA DETAIL FOR MASONRY USE U W J a. Enclosed structural systems use a negative internal pressure coeRkciert=+1-0.18. 114"x 1-114'MASONRY C 2 r Lu ns9 SCALE: 2"■1'-0" ANCHOR OR EQUAL @ 24'O.C. Fier. 16-N p K b. Partially Enclosed structural systemsuse a negative Internal pressure coeificknt-+1-0.55. SST FOR WOOD USE#10 x 1-1/7 w W m S.M.S.OR WOOD SCREWS -r O 4. Overhangs use a minimriv um e bad of 20 PSF except for 1408 and 150 MPH loads which are 30 FOR MASONRY USE HEADER(SEE NOTE BELOW) 12'O.C. a O '�- ROOF PANEL Co PSF.Wind bads are from ASCE 7-98 Section 6.5,Analytical Procedure for Components a Cladding kr 1/4"x 1-114'MASONRY / �- >J V Enclosed or Partially Enclosed Structural Systems.The bads assume a mean rod height of loss Can ANCHOR OR EQUAL @ 24'O.C. 30';roof slope of 20'to 30'(+/-10•�1-1.0.Negative Internal pressure coefficient is 0.18 for enclosed FOR WOOD USE#10 x 1-1/2' j aro 0.55 for partially enclosed structures. S.M.S.OR wood SCREE Sc� <w ROOF PANEL TO WALL DETAIL S. Anchors for composite panel roof systems were computed on a bad width of 10'and 18 projectiona O ROOF PANEL SCALE: 2'=1'-0' EXISTING HOST STRUCTURE: WOOD STRUCTURES SHOULD CONNECT TO TRUSS BUTTS OR THE SUB-FASCIA FRAMING WHERE 01 with a Z overhang.Any greater used width shall be site specific WOOD FRAME.MASONRY OR f/8 x 412'S.M.S.(3)PER PAN OTHER CONSTRUCTION (BOTTOM)AND(1)Q RISER POSSIBLE ONLY.75%OF SCREWS CAN BE OUTSIDE THE TRUSS BUTTS. SUB FASCIA AND THOSE AREAS Conversion Table 7A Conversion Table TB (TOP)CAULK ALL EXPOSED SHALL HAVE DQUBLE ANCHORS.ALL SCREWS INTO THE HOST STRUCTURE SHALL HAVE MINIMUM 1-114" O 7 O/ SCREW HEADS WASHERS OR SHALL BE WASHER HEADED SCREWS. Load Covealon Factors Based on Conversion Based on Mean Height of Host ROOF PANEL TO WALL DETAIL 21 Mean Roof Height of Host Structure Structure for Solid Roof Systems HEADER INSIDE DIMENSION SHALL BE EQUAL TO PANEL OR PAN'S DEPTH T.THE WALL THICKNESS g For A8 Components From Exposure B b C SCALE: 2'=1'-0' SHALL BE THE THICKNESS OF THE ALUMINUM PAN OR COMPOSITE PANEL WALL THICKNESS. HEADERS Lx ostwe"B'to"C' Most - Spm M° SHALL BE ANCHORED TO THE HOST STRUCTURE WITH ANCHORS APPROPRIATE FOR THE MATERIAL HE am Mosrh Murk composts g vct Land udapa, P c�br ROOF PANELS SHALL BE ATTACHED TO THE HEADER WITH(3)EACH#8 x 1#7 LONG CORROSION CONNECTED TO.THE ANCHORS DETAILED ABOVE ARE BASED ON A LOAD FROM 120 M.P.H.FOR SBC structure"MOM pens PsnNs 0-17 1.21 0.94 0191RESISTANT SHEET METAL SCREWS WITH VY WASHERS. ALL SCREW HEADS SHALL BE CAULKED OR SECTION 1606 FOR A MAXIMUM POSSIBLE SPAN OF THE ROOF PANEL FROM THE HOST STRUCTURE. ///111 11-Ir 0.91 044 1F-2v 1.2e 0.92 0.55 SHALL HAVE NEOPRENE GASKET BETWEEN THE WASHER AND THE PAN. PAN RIBS SHALL RECEIVE(1) ANCHORS BASED ON 120 MPH WIND VELOCITY.FOR HIGHER WIND ZONES USE THE FOLLOWING A ts-2v 0.80 0.92 20'-2s' 1.34 021 0.95 EACH#8 x 1/2'SCREW EACH.THE PANS MAY BE ANCHORED THROUGH BOXED PAN WITH(3)EACH#8 x 1' 2W-2V 0.56 0.91 2F-3W 1.40 0.59 0.55 OF THE ABOVE SCREW TYPES AND THE ABOVE SPECIFIED RIZER SCREW. #8 x 9/1W TEK SCREWS ARE 6 CONVERSION: v 25'-3r o.es 0.ss ALLOWED AS A SUBSTITUTE FOR#8 x 1/2"S.M.S. 1100-1231 130 1 140 1 150 1Q #8 #10 #12 #12 07-08-2004 OF v 1 I PLACE SUPER OR EXTRUDED 12'0 SCH.40 PVC FERRULE GUTTER BEHIND DRIP EDGE — — M PAN SLOPE PANEL RIDGE BEAM (3)#8 x 3/4'S.M.S.PER PAN WI BEAM(SEE TABLES) EXISTING TRUSS OR RAFTER — 3/4'ALUMINUM PAN WASHER COMPOSITE PANEL r x 6•FOLLOWS REMOVE EXISTING SHINGLES ROOF SLOPE I #10 x r S.M.S.Q 12.O.C. a CAULK EXPOSED SCREW 1'x r OR 1'x T FASTENED UNDER NEW ROOF ———— - HEADS TO PANEL W/(2)114•x 3'LAG SCREWS WI WASHERS {{{{'"' SEALANT FOR 140 a 150 MPH USE 12 (2)3/8-x 3•LAG SCREWS v 6 1!4•x8'LAG SCREW(1)PER EXTRUDED I RAFTER TAIL AND W/WASHERS EXISTING FASCIA SUPER UU GUTTER 1 4ux S LAG SCREW MID WAY B-B-ELEVATION VIEW SEALANT or, RAFTER TAILS SCALE: 1/2'=1.0• SUPER OR EXTRUDED GUTTER ATTACH TO ROOF Wl EXISTING ROOF TO PAN ROOF PANEL DETAIL 1 RECEIVING CHANNEL AND SCALE: 2 -l-V (8)010 x 1'DECK SCREWS PLACE SUPER OR EXTRUDED AND(8)#10x3/4'S.M.S. POST SIZE PER TABLES EXISTING FASCIA (,UTTER BEHIND DRIP EDGE INSTALL W/EXTRUDED OR EXISTING TRUSS OR RAFTER J BREAK FORMED 0.050' SEALANT Q I ALUMINUM U-CLIP WI(4)114'x #10 x r S.M.S.®1r O.C. Z RIDGE BEAM 1-12•LAG SCREWS AND(2) 12.0 SCH.40 PVC FERRULE 114•x 4'THROUGH BOLTS Cl (TYPICAL) SEALANT O z W Ozo TRUSSES OR RAFTERS __ (1)#8x3/4'PER PAN RIB Or (.7 U ----- >- Xn 0 Z J (2)114'x 4•LAG SCREWS AND _____ CAULK EXPOSED SCREW Z Q Z 0 Zr"x 6- I WASHERS EACH SIDE HEADS - _ W 3'PAN ROOF PANEL °B W 5 W 0 E=XISTING 1/r OR 7116' EXTRUDED OR (MIN.SLOPE IW:11 U ? m z SHEATHING POST SIZE PER TABLES 114-x W LAG SCREW(1)PER SUPER GUTTER J Z INSTALL W/EXTRUDED OR TRUSS/RAFTER TAIL AND 3-SEEDER EXTRUSION b O N — POST SIZE PER TABLES BREAK FORMED 0.050' 114'x 5•LAG SCREW MD WAY FASTEN TO PANEL W!(3) U? } #8 x 112•S.M.S.EACH PANEL i ALUMINUM U-CLIP WI(4)114'x BETWEEN RAFTER TAILS V SCREEN OR SOLID WALL ROOM VALLEY CONNECTION I 1-12•LAG SCREWS AND(z) SUPER OR EXTRUDED GUTTER Q F OJ W 114•x a-THRouGH BOLTS EXISTING ROOF TO PAN ROOF PANEL DETAIL Z W 2 - FRONT WALL ELEVATION VIEW (TYPICAL) o B-B-PLAN VIEW SCALE: r=r 0- W SCALE: 114'-TO () Z N SCALE: t/r=1'-W BREAK FORMED OR 0 EXISTING TRUSSES OR (3)#8 WASHER HEADED EXTRUDED HEADER wp 1 1 A RAFTERS SCREWS W!1'EMBEDMENT PLACE SUPER GUTTER SEALANT Q j 1 1 A B 1 I B 1 /N' HOST STRUCTURE _ CAULK ALL EXPOSED SCREW BEHIND DRIP EDGE #10 x 4'S.M.S.WI @ Ir / ——————— ——— HEADS AND WASHERS FENDER CREWWASHER A S O.C. —1—— CAULK SCREW HEADS a WASHERS ————— EXISTING TRUSS OR RAFTER ( —————— SEALANT CAULK EXPOSED SCREW W N N N FASCIA OF HOST STRUCTURE HEADS Q- O II p #tO x r S.M.S. 24'O.C. —_——— y LL RISER PANEL UNTREATED OR PRESSURE 3'COMPOSITE ROOF PANEL 2 ♦ i U I) r x_RIDGE OR ROOF BEAM TREATED W!VAPOR BARRIER __— (MIN.SLOPE 1l4':t) � V 9 Y l 2 w q b (SEE TABLES) ALL LUMBER#2 GRADE 1/4'x6'LAG SCREW(1)PER "m O II TRUSS 1 RAFTER TAIL 12'0 SCH.40 WC FERRULE C W a II SCREEN OR GLASS ROOM )DOUBLE II _ _ EXTRUDED OR �( N WALL(SEE TABLES) ( O NON-SPLICED PLATE EXISTING FASCIA SUPER GUTTER j O w g W ••aS WALLS 1170OR LESS EXISTING ROOF TO COMPOSITE ROOF PANEL DETAIL 1 ui LL PAN TO WOOD FRAME DETAIL SCALE: r=V0 OPTION 1: U �` 1r MAX. SCALE: 2"-1•-0' r x_x 0.050'STRAP EACH X 112 (WITHOUT ADDITIONAL ROOF BEAM AND SUPPORTS COMPOSITE SEAM AND MAX.ROOF BEAM SPACING IS 6'O.C.) WHEN FASTENING PANELS CAULK EXPOSED SCREW WAY BETWEEN EACH SIDE Wl 3; J OR PANS TO WOOD PLATES HEADS (3)#10 x r INTO FASCIA AND c (3)010 x 314•INTO GUTTER SCREEN OR SOLID WALL ROOM VALLEY CONNECTION 13CREWS SHALL HAVE A _J PLAN VIEW COMPOSITE PANEL PLACE SUPER OR EXTRUDED MINIMUM EMBEDMENT OF 1' GUTTER BEHIND DRIP EDGE OPTION 2: SCALE: 118-=1'-W 1/4'x LAG SCREW(1)PER _ . TRUSS /RAFTER TAIL IN 100 SCH.40 PVC FERRULE 30#FELT UNDERLAYMENT W! 220#SHINGLES OVER - SEALANT COMPOSITE PANELS CUT PANEL TO FR FLAT AGAINST EXISTING ROOF 3'COMPOSITE ROOF PANEL 0.024-FLASHING UNDER FASTENERS PER TABLE 36-0A Z� EXISTING AND NEW SHINGLES MIN.1-12'PENETRATION #10 x r S.M.S. 24'O.C. —————- (MIN.SLOPE 7l4't 17 UNTREATED OR PRESSURE SEAL TREATED W/VAPOR BARRIER 2 x 4 RIDGE RAKE RUNNER ALL LUMBER 92 GRADE OR 3'HEADER EXTRUSION SHEET TRIM TO FIT ROOF MIN.1.0 BETTER EXTRUDED OR FASTEN TO PANEL W/ INSIDE FACE EXISTING?BUSS OR RAFTER SUPER GUTTER #8 x 12'S.M.S.EACH SIDE FASTEN W/(2)#8 x 3'DECK (OPTIONAL)DOUBLE PLATE EXISTING FASCIA G 1r O.C.AND FASTEN TO SCREWS THROUGH DECK FOR NON-SPLICED PLATE EXISTING RAFTER OR INTO EXISTING TRUSSES OR WALLS 18'-0'OR LESS GUTTER WI LAG BOLT AS TRUSS ROOF SEALANT RAFTERS SHOWN A-A-SECTION VIEW COMPOSITE PANEL TO WOOD FRAME DETAIL EXISTING ROOF TO COMPOSITE ROOF PANEL DETAIL 2 07-08-2004 OF 8 SCALE: r=T-T SCALE: 12'-1'-0• SCALE:r=t'-0• I f COVERED AREA TAB AREA W/1'ROOFINGNAILS o #8 x i/2'CORROSION INSTALLED PER o RESISTIVE WASHER HEADED MANUFACTURERS 0.024'ALUMINUM COVER PANSEREWS @ 24'O.C. OR CONTINUOUS ALUMINUM ALTERNATE#8 x 112'S.M.S. SPECIFICATION FOR NUMBER o SHEET W/10 0 WASHER. AND LOCATION o 0 . SUBSEQUENT ROWS . .. . 0 0 3/8'TO 11r ADHESIVE BEAD o FOR A 1'WIDE ADHESIVE r STRIP UNDER SHINGLE W f STARTER ROW TYPICAL INSULATED PANEL COMPOSITE PANEL W/ SCALE: r=1'-0' EXTRUDED OR BREAK FORMED CAP SEALED IN NOTES: PLACE W/ADHESIVE OR 1.INSTALL RIGID FOAM INSULATION INTO ALUMINUM ROOF PAN. SCREWS 2.COVER INSULATION WITH 0.024'PROTECTOR PANEL WITH OVERLAPPING SEAMS. 7/18'O.S.B.PANELS 3.INSULATION PANEL SHALL BE CLOSED WITH ALUMINUM END CAP TO SECURE PLACEMENT AND TO DISCOURAGE THE NESTING OF WILDLIFE AND OR INSECTS. PROFAB COMPOSITE ROOF PANEL WITH O.S.B. 4.PROTECTOR PANEL WILL BE SECURED BY#8 x 5/8'CORROSION RESISTIVE WASHER AND STANDARD SHINGLE FINISH DETAIL HEADED SCREWS. 5.SCREW PATTERN WILL BE 12*ON ALL PERIMETERS AND 24'0.C.FIELD ON EACH SCALE: N.T.S. PANEL SPECIFICATIONS FOR APPLYING O.S.B.AND SHINGLES FOR ROOF SLOPES OF 3:12 AND GREATER 6.ALUMINUM END CAP WILL BE ATTACHED WITH(3)#8 x 112"CORROSION RESISTIVE WASHER HEADED SCREWS. 1. INSTALL PRO-FAB PANELS IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS. NOTE:FOR PANEL SPANS W/0.024'ALUMINUM PROTECTIVE COVER MULTIPLY 2. SEAL ALL SEAMS WITH PRO 2000 CHEMREX 948 URETHANE AND CLEAN THE ROOF OF ANY SPANS IN SECTION 5 OR 7 BY 1.28 FOR H-28 METAL 3120 FOR H-14 OR H-25 METAL DIRT,GREASE,WATER OR OIL 3. APPLY 16 MILS OF MORTON 652 GLUE TO THE PANELS AND INSTALL 7/16'O.S.B.OVER THE GLUE AND PANELS. 4. INSTALL 15#FELT PAPER IN ACCORDANCE WITH THE FLORIDA BUILDING CODE,2001 EDITION, SECTION 1507.38. S. INSTALL SHINGLES IN ACCORDANCE WITH THE FLORIDA BUILDING CODE,2001 EDITION,SECTION 1507.3. a COVERED AREA 00 UNIFORM LOAD UNIFORM LOAD 00 TAB AREA rr ,r 3/8'TO 1/r ADHESIVE BEAD FOR A 1'WIDE ADHESIVE STRIP UNDER SHINGLE SUBSEQUENT ROWS A B A B a rrr"- STARTER Row SINGLE SPAN CANTILEVER 1 OR SINGLE SPANrz LL COMPOSITE PANEL W/ C Fw fp EXTRUDED OR BREAK UNIFORM LOAD UNIFORM LOAD C y�> FORMED CAP SEALED IN PLACE W/ADHESIVE OR m SCREWS q SEALANT BEADS W LL p a1 e�5 i PROFAB COMPOSITE ROOF PANEL WITH SHINGLE FINISH DETAIL A B C A B C D U w SCALE: N.T.S. 2 SPAN 3 SPAN ?X ATTACH SHINGLES TO COMPOSITE ROOF PANELS WITH INDUSTRIAL ADHESIVE•. W m APPLY ADHESIVE IN A CONTINUOUS BEAD 318'TO 11r DIAMETER SO THAT THERE IS A 1'WIDE STRIP OF ADHESIVE WHEN THE SHINGLE IS PUT IN PLACE. UNIFORM LOAD J O FOR AREAS UP TO 120 M.P.H.WIND ZONE: 1) STARTER ROWS OF SHINGLES SHALL HAVE ONE STRIP OF ADHESIVE UNDER THE SHINGLE AT MID COVERED AREA AND ONE UNDER THE SHINGLE AT MID TAB AREA STARTER i L SHINGLE ROW INSTALLED WITH THE TABS FACING IN THE UPWARD DIRECTION OF THE ROOF SLOPE. A B C D E 2) SUBSEQUENT ROWS OF SHINGLES INSTALLED WITH THE TABS FACING IN THE DOWNWARD DIRECTION OF THE ROOF SLOPE WITH ONE STRIP OF ADHESIVE UNDER THE SHINGLE AT 4 SPAN MID COVERED AREA. 4 FOR AREAS ABOVE 120 M.P.H.WIND ZONE: 1) STARTER ROWS OF SHINGLES SHALL HAVE TWO STRIPS OF ADHESIVE UNDER THE NOTES: L SHINGLE AT MID COVERED AREA AND TWO STRIPS AT MID TAB AREA. SHINGLE ROW 1. 1■Span Length INSTALLED WITH THE TABS FACING IN THE UPWARD DIRECTION OF THE ROOF SLOPE a s Overhang Length HEFT 2) SUBSEQUENT ROWS OF SHINGLES INSTALLED PER PREVIOUS SPECIFICATION WITH TWO 2. AN spans listed In Ba tables are for equally spaced distances between supports or anchor points. STRIPS OF ADHESIVE AT MID COVERED AREAL 3. Panels stall not be spliced except at supports. • ADHESIVE: CHEM REX-PL PREMIUM 948 URETHANE ADHESIVE OR OSI•RF140 // 6 )C MINIMUM ROOF SLOPE: r IN 1r SPAN EXAMPLES FOR SECTION 7 TABLES C SCALE: N.T.S. 07-08-2004 OF Table 7.1.1 Allowable Spans for Industry Standard Ricer Panels for Various Loads Table 7.1.3 Allowable Spans for Industry Standard Riser Panels for Various Loads Table 7.1.5 Allowable Spans for Industry Standard Cleated Panels for Various Loads Aluminum Alloy 3105 H-14 or H-25 Aluminum Alloy 3105 H-14 or H-25 Aluminum Alloy 3105 H44 or H-25 1-IJ4"x 12'x 0.024'2 or 5 Rib Riser Panels 3-x 12"x 0.024'2 or S Rib Rlser Panels i-Sit'x 1r x 0.024"Cleated Parols Open Slnxbnss - Screen Rooms Goes 14 Modular Rooms Overhang l Open StruCtYfla Screen Room Glass E Modu W Rooms Overhang I Open Structures Screen Rooms Glass E Modular Rooms Overhang I ed Enclosed Cantilever R i Attach Covers II YVod Mono-Moped Root Wind Mono-Sloped Roof E Attached Covers Enclosed Cantilever Wind MonoSloped Roof i Attached Covers Enclosed Cantilever Region tit 7 K,44 tit 3 4 162 3 4 AN Region tit S 4 1E2 1 4 162 7 4 M Region 162 S t 112 3 4 tit S 4 An span span open span span span span span Roots span span span span span span span span span Rook span span span span span span span span span Rooh100 MPH 5$ 8'35'•11• T-S T$ 4•-1P 6'-r 6'-3• 1'-1/• - 700MPH 14'-5• 1r-10' 18'-7 13'-T 15-8• trr 71'-1• 14'•7 1r-S !'-0' 100 MPH ter$ i?-1 t• 73'-2' 9'-T 11'-t0' 17-5 0'-1' W-1/' to-r 70 I10 MPH 5-1' TA' S-r s-11• T-Y 4•-8' S-8• 5'-11" 1•-10• 110 MPH 13'-11- 17,.10• 15-r 17-r 1S-T1_5- tad• 13'•4• 17-T' 7-11' 110 MPH 9'-10' 17$ tr-70• 5-11' 71'-T 11-3' Tei' g-4• 9'-6• 7-10"120 MPH S-10• r-3• Sot• 5- s$ 4'•5' SS' S'-r t'-9• 120 MPH 13'-3• 76'-4' lr-T 11'$ 14'-71' 1S 9'-8• 12$ t?-9• 7-9• 120 MPN 94' /1-r 11'-10• S'$ 1013• 101$ 5-71" 8'-9• B-lV r-W 123 MPH S-9• T-T 5-7 5-5' ST 4'4' S4' S'S' 1'$ 123 MPH 13'-0' 15-1' 755' 11'•6' 11'-0' 14'-11 9$ 174' 12$ 3$ tZl MPH 9-Y 71'4' 11'T 8'd' 1014' 7Q-B' 6'4• 5$ 5-17 7-0'130 MPM S$ 5-9' 4'-11' S-r 53' +•-r -r 5'3• t'-8' 130MPN 17-r 7S-T 75.7P 11'•1' tr-r 14'5' 9.4' 11'-6- 1PA- 3$ 130 MPH 5-9• to-10' 11'-1' 8'-1' 914 t• to-r 5-r 54• s$ 2'-r 110 MPN 4'$ S4' 4'$ S-9• S-ice' 7-11' 4'-11• 5-0• t'-T 1l0 MPH to-0' 774• t7-T WIF 774' 17-r 8'-70• to-11" 11'-r 3'4• 110 MPN 7,3' 5-11• 9'-7 T-3• 5-11' 9'-r 5-3' r-11• 8'•i' ?-s 1SO MPH 4'$ 5A' 5.77 4'$ S-T 5-9• 3'•10' 4'$ 4'-17 1'$ 150 MPH 10'-0" 174' 17-T 1014• 774• to-5' 101$ 3-r 150 MPH I 7,3 B'-71' 9'-Y I T-t' 9-11' 9'•r 15'-11' T-S T$ rd' I' t-1M x tr x 0.030'2«S Rib River Panels 3"x 12"x 0.030"2 or 5 Rib Riser Portals i V4•x Ir x 0.030'Cleated Panels Open Strueharm Screen Room Glass IG Modulen Room Overhang I Open 8truttures Seven Room Glace i Nodular Room OvMvrng/ Open Structures Semon Rooms Glass E Modular Room Overhang I Word MonoSloped Roof tAttached Covers Enclosed CWMNMW Wind Mono-Sloped Roof i Attached Coven Enclosed Cantilever Woad Mono4llopod Roof E Attached Covers Enclosed Cantilever Region 1EZ 3 4 1&2 3 4 IE2 3 4 AN Region 162 3 4 1E2 S 4 162 S t ItN Region %2 3 4 tE2 7 t tit 3 4 AN It span spm span span span span span span Roofs span span span span spar span span span spar Roob s pan spun span span span spm span span span Roofs 100MPH s-11- I 8'-77 9-0• s-5' S-1• SJ' 5-4- s-r 6'-9• 1 747, 100 MPH 15-7' 15-3• 17$ 11'$ lF-S' 1411' 175 154• 15-r 4'-7 100 MPH 77'-34 t3'-11' 14•-r ta4• 13'-1* 174' 8'$ to$ 101-111' T-r 110 MPH 5-71 1 8'4' S$ 5-11• T-5• r-r S-7 8'-r 54' 11-11' 110 MPH 15'-1" 197 IT4r 13'-r 77,$ is$ ll'-r 14'-S• W-r r4r 710MPH Ice-T 17-V 13'$ g'$ 11-116 17-5• 8'-t- 4-11- ta-T T-1- 120MPH 63 T-11' 8'-1• 5$ 7,-7 r-2• +'-9• 5-17 5'-111 1'-17 120 MPH 14'-3' 15$ 19'-1' /3'-1• is-r w4r ta•T 13'$ 13$ 4'47 120 MPH 101-Y 1r-9• 13'-V 9-i• It'-T 11'$ 7,-5' 8'$ 747 r-11' 'i US MPH 5-2 T-T r-11' S-r s-11' T-0' +'-8• S-91 S-17 1'-17 123 MPH 11'-1' I5•Y 18'-r 17-17 1S-17 ls-r ta-r 13'01• 17-r 7-11' 123 MPH W-17 17-r 17-17 S-it• ii'-1• 11'-3' r4' 9`4' 7$ ?-17 130 MPH 5-17' T-3' Ta' S4' F-7' s-9• r$ S$ S$ 7'-9' 130 MPH 13'-7* 15.17 it-T 17-5' 154' iS-r to-/• 17-17 13'-l' 3•-/7 130 MPH 7.5' 11'4r175 $8' 101$ W-11" r4r 9-0' 7-r 7.9' J 140 MPH 4'-lV W-2' s-3• 4'-i7, s-r s-3• 4.3• S-3' 5-S' 1'$ 140 MPH 101-17 134' 13'-8• to-77 174• IT r W-T 11'-17 17$ 7-T 140 MPH r-17 5$ 9-17 T-17 r4r r-/7 s-9• 5-r 5-7 7-r Q 150 MPH 4'-71• 5-t B-3• 4•-17 5-0' S-T r•1• S-0' 51-21 1'_r ISO MPH 10--17 1 174' iY-r I to-ur 1 13'4• 13'-r•I im- I 11•-3• 11•$ T-51 ISO MPH 7--17 I 8'$ 9-17 r-17 9$ I P-17 I 5$ B-r 8'4' 2'$ 1-114':Ir:O.OSO'2 or S Rib Roar Patrols 3'x it x 0.050.2 or s Rib Ricer Park 144 x 1r x 0.03r Cleated Poneb Open 8truetraaa Sween Room Glass Il Modular Room Overhang/ Open Strueteras Screen Room Gloss i Modula Rso= WsArng/ Open Structures Screen Rooms Glass i Modular Room Overhang/ Q Wind Mona-Sloped Root E Attached Covera Enclosed CantNerer Wind Mono-Sloped Roof E Attached Coven Enclosed Cantilever Wind Mons4loped Root E Attached Covers Enclosed Cantilever Z 0 Reglan 162 1 3 4 1E2 3 4 itt3 4 A0 Region 1E2 3 4 1E2 3 4 162 3 4 AN Reglan lit 3 4 162 3 4 162 3 4 AN V spm open span upon span spm span spm open Root span open span span upon span span spm spm Rook span open Wan span spun open span stem -pen Roots } Ur Z CO 10OMPH 5-S' Ia4• to-r r$ 5$ W_r sJ' T-111 sr 7-V100 MPH Is-3- 2r$ 27-11-27-1ir$ 2r-77 27-3• 14•-5- 15.5 /r-17 r4r 100 MPH 13••2* 1s4• 1s-r 12•-s ts4• 1S$ 101-r 1z-i1• /3'•r 3•-l7 Z W Z 0 J /10MPH T-it• 0'A- W-11' r4r S-t7 W-1• 5.41• T-3- 7,5 2W 110MPH 15-3• 22W 27-11• IF-11' 201-T 21'$ 13'-T ir•T' 1T-ii' r4r 110 MPH 1z$ 15'-9• is-t' 11--3• 14'-3' ir-r 9'-5 it'$ 1r-S 3'-r > Q LA li 120 MPH 7,.4' 9J' 9$ 5$ 54' 8'$ S$ 6`-17 W-1 I- r-r 120 MPH 111.8" 21'417 27-7 IS-3' 7r$ 2(y.1' Iz-9- 15-0' is-1' 4•4r 120 MPH It'$ /4'-1r iso• 101$ IT4r 17-11• 5-11' /1'-1• 11'-3• 3'-5' U) J 0 Q 123 MPH r-r 9-i- 9'-3' s$ a-3• a-s- s-5' s-9• s-17 7-1* 123 MPH 16•-5• 2i'-3• 21'$ 15'-0• Ir-3• 1g'$ 17•r 1s$ 1s•tr 4'4' 123 MPH 1r•T' W-W lF'V la-V 13'-5' lT4r s-17 is-11• 11•-I- 3.4• W W ~ 130 MPH s•11- 5$ 8•-17 53 r-tr s-r 5r s$ sr r-r 130 MPH 75'-11" 201-I' 20$ ir$ 15$ 11.17 11'-9• 1r-11' ISJ' r-0• 130 MPH 1r•r W-3- tr4• to-r 17-tr 17-r ir$ ice$ 101$ 3'-T V m 'd• ~ 140 MPH 5-77 r-r 7,4• 1417 T-T 7,4• 1-0" s-r s4• 1•-it• 140 MPH i?$ 15'-7' is-/r iz$ is-r is-il• ir-2• w4• 14'.r r-0• 140 MPH Ir-r 11'4• Ir$ 9•-r 11'4• 11'$ Ir-l" la-W ia3 Y-Y �Q? 150 MPH 5-17 r-r 7,4• S'$ T-0' Td• r-9• S-17, 8'-7 1'-17 /SO MPH 12'-V t5'-T 1S-11' 17-0• 15-T 15.17' ter$ 13'-8• 13'-tY 4'-0' 150 MPH 9-r it'4' 11•$ 9'•r 11-4- 11'$ T$ 9'8• 7-V 7-11• (~,� 0 e`s O Nota:Toed toot panel width=room width.wall widtlt.ovedrerg. Hots:Total roof panel width=room width+war width+ovem". Hofs:Toed roof pans{width=room width+war width+overhang. Q W 0 Q W Table 7.1.2 Allowable Spans for Industry Standard Wier Panels for Various Loads Table 7.1.4 Allowable Spans for Industry Standard Riser Panels for Various Loads Table 7.1.6 Allowable Spans for Industry Standard Composite Roof Panels Z y L .4 � Aluminum Alloy 3105 H-14 or H-25 Aluminum Alloy 3105 H-28 for Various Loads (L t-trr x tr x 0.024"2«S Ran Riser Panel 3'x 1r x 0.024"2 or S Rib Riser Panels Aluminum Alloy 3105 H•14 or H-2S 1.0 EPS Core Density Foam W Open StruCMp Eereen Room Gloss ti Moarler Room Overherg/ Open Structures Screen Room GWs E Modula Rooms Owdtang/ 3':45 x 0.02P Parols IX Z Word Roof a Attached Covers Enclosed Cantilever Wind Mono•Sbped Roof i Attached Coven Enclosed CWrNtaoer Reskn 162 3 4 172 3 4 1E2 S 4 AN Region tit 3 4 112 3 4 tit 3 4 AN open Monostru-Sloped Seven Roam Glass i Modular Rooms Overhergf V Wlod Mwresloped Roof I i Attached Covers Enclosed j open I spm open span open span spm ropon spm Roofs span span span open spm spm span span span I Roofs Region lit 1 3 4 1&2 S 4 1E2 3 4 AN J span span Wen open open seen span open span Roofs 100 MPH 19-11• 21'-0' 21'-S 19-11' 2014• 2a4• 13'•5 15$ it-r 1 4'47 100 MPH /4'-r Ir-11• 154' I l3$I 1r-5• /r0' 11'-2- 14'•3• 7rT 1 4'-0• Q IIOMPH 15$ 21'-0• 21'5' 1x-17 74-3' /9$ iz$ /S$ IF-W 4.4• 11OMPH 14'-1• lr-11• 754' 17-fr 154' 1547, ter$ 18-5 13-9• 3-1 t' too MPH 7114• 19'4' 15-9' tS-17 15$ 77,-17 tt'$ t3$ 13-3• 4'-0" 120 MPH 19-T 2014' 201-5 74'-3' 78'4' 18'-9' II'$ I4'-9' ISS' 4'-V 120 MPH 184' IT-6' 173" ii'-9' iS-7' iso• 9-11• 17-r 17-77 3.9' it*MPH 16'$ 194" 1549• I4•-7 1SAW 15-3' ter$ 174' 11'$ 4'-V 123 MPH 194• 19-77 211-3• 13'-11' tett' 154• il'-t• W-67 W-W 4'-7 123 MPH 13'-r 15-3' 1114' 17'-r it'-17 194- 9A" 17$ /7$ 8$ 120 MPH 17,-r 78'$ 17,-17 18-8 14'-17 14'4' 9$ la•17 101$ 1'-1' 130 MPH 14'-17 ts-5 19-r 13'$ 15$ ITT ta-1T 13-tY 1r-3• 4'-0• 730 MPH /T-9' 15-9' 15-0' 11'-r it-3" 14'• 9-S 11•$ 77,-17 3'-T 123 MPH tr-17 it-9• 16'-T it-11' 14'$ 13-11' 9$ to-T to-3• 8-11" 140 MPH 11•-9• 14•-T 11'-17 11--9" 14!-7- 1r•17 ter$ 13'4' ITT 3'-1Y 140 MPH to-1• 77$ 17-9' 1 to-T 17$ 174" 8'-11' 11'-1• 11'.11 3'4' 130 MPH /4'-r 15-/7 1S-3• 11'$ 1341` 18-3' 9-W /01.1' 9-9' 7-7 t+ 150 MPH 11'-5 14'- 17.77 1W'•r it-r lr•17 9.11' 1r-g' it-ti' Tor 150MPH 101-1• 1r$ it-9• to-1• i7$ 17-9• 8'$ 101$ 101-9' 3'J' 140 MPH ter$ ll'-2- 17-10• 101.0- 11'-7 17-/7 $4• 94- 9-0• 2--l'. W tV 150 MPH 101$ 11'-2- 1 to-17 1 101-0• I7'-2- 101-/7 r$ r4r 84• 7-17 a ~ 3•x 48•x 0.030"Panels 1-tit"x 1r x 0.030'2«5 Rb Rim Parols r x 12'x 0.035 2«5 Rb Riser►mels y it Open Sfruehams Semen Room oleos Il Noduler Room Overherg 1 Open Strveluns Sueen Room Glass i Moduox114'4W Wind Merno-BbpW Roof i Atbehed Covers Enclaad Cantilever Wird MonoSloped Rod i Attached Coven EnclosedCadaeverRegion tE2 3 4 tit 3 / 162 3 4 AN R ion Region 'Mor10-Slo Roof 1&Attached Covers 112 Enclosed 4 Cantilevereg 1E2 3 4 1E2 3 4 162 3 Aa AN �p`span span open span span open spm upon span Rook open spm span spm span span span span Rook spar) span spm span span span spm spm span Rook C <h100 MPH 201$ 27-11' 27-Y 19$ 21'•17 21'•1• W-W 11.2 1S$ W-WO��100 MPN Q$ ter$ ter$ T-17 9$ 9-17 54' r'-1• 53 7$ 100 MPtI 15-9 19-1 19-17 14'-17 15-/7 19.7 17$ 1S-S 4'�" p110MPH 20$ 2z-it• 27•Y tr-11" 20'-1• 19-5' 18-3• 11•-9" 14.3 4•-7 (O 110MPH S-0' 9-11' 101-1• T-r 9-11' 9-r 5--it- 7,4' T$ r4" 110 MPH 15-r 195 19-77 IT-W 17,-17 18-7 1Tr lr-r 1r4r m120 MPH T-1 9$ 9.r s•P 8'$ 53• 5'•7, s-11' T-t' 2'-2• 120 MPH 14'-S l8•-17 19-r 18-r 19-7 15•r ter$ 13'-r r-W 120 MPH 19$ M(12 15-V 15$ 18'-1' 17-$ 18-5' 18.7r$ W123 MPH 18•-5 754' 15-r /T7' 11-r 73'-1' 17$ 4'-0'123 MPH 7,-3• 9-2 9-S S-T 8'4' r'•5 S$ imir 5-11• 7-r 123 MPH 11'-r 154' 154• 17-77, iS-/1' 754• ter$ 13'-5' ?-11' W130 MPH 15-8• iC4r 15-2 1S$ Ice$ 17-S' 11•$ r.7130 MPH ear 1-17 s-11' 8'4• 5-Y 53 s4• 5-T 5$ 7-i' 130 MPH 13-9' tr4' 17-9" 17$ 19$ 1S$ 101-7 1r-1r 3'•17 LL r0=X 140 MPH s-1r r.3• r$ 5'-11' r.3• rd• Sa• s-3' s5- 1'-11' 140 MPH to-tl- IT-W IT-W to-1r 1?$ 13••9' 9$ izd- lr-r 7-W 140 MPH ira7 it-17 73'-3' it-9• gar Ir.r 101$ r-r Q� at IL 1s0 MPH 5-11- 7,.3• rS S9' r2- Fr 4-49- 5-41• 8'-1' 1'-17- ISO MPH to-11' 1S$ 78$ to-17• IT-W 73-9" 9-r 1114" 11•-T 747 150 MPN i i'-77 11'-17 13'-3' 17-9" 9-r ta•3' 9-17' 3'4• C W N W 4'x 45 x 0.02P Panels X F 1-lir x Ir x 0.050'2 or S Rb Riser Parcels 3"x 1r x 0.0S5 2 or S Rb River Palls Open Structures Screen Room Glass i Modular Room Overhang/ f. 2 O Open SfrucMes Screen Raom Glen 8 Modular Room Overhang/ Open sbuepxas Screen Room Wass 6 Modular Rooms Overhang I Wind Mora-Bio Roof i Asached Covers Enebsed Cantilever 3 4 O Word Mone-Sloped Rod 6 Attached Covers Enclosed Cantilever Wind Mono-Sloped Rod i Attached Coven Enclosed Cantilever Region tit 3 t 1E2 S t 162 3 4 AO J span spm spm span spm open spm spm span Rook i Region 162 3 4 112 3 4 162 3 4 Ave Region 1E2 3 4 tit 3 4 /E2 S 1 Ail open spm span open span span spm spm open Rook 100 MPH 201-0• 22'4• 21'-T 19-1• 21.4' 2a-r 74'-2 1S-77 15-3• r-W upon span Wen upon open spm span spm spm Roofs 110MPH 201$ 274' 27'-T 17,$ 19-T 18'-11• 17-71' 1!'3' 13.11* 4'-0' .� 100 MPH ir-11' 1z-r, 17$ r-1• w-r 111-6• r$ 93• 9$ T-It- 100 MPN 115• 27-9- 27-r Ir-77 27-W 22•5 14=r 18'3' 19-1• r-7 120 MPH 19-Y 21.4• 201-T 154' 153 17,$ 11'-2 13-r 1r$ 11$ ` 110 MPH 94' ti'-r IlAr 8'$ ter$ 101-9• s-11' C-17 8'•11• r$ IIDMPH 15-1 27-9" 23-r is-1• 201.17 21••3• 18$ it-9' 15-Y 4•-0' 123 ANN tr'd' 201$ 19-77 IV-11' 17,$ 15-2• IV-11' 17•17 124• 1'$ 1N MPH 1-17• 101.11' 11'-r 8'-0• 9-111 to-7' s-r 8'4' S$ 7-T 120 MPH it-17 27-0" 27-5 1SS 19.17 2V r I7-11' W-11' 1s3 r47 136 MPH iso' 15-11' 15-3' 14'-r 3-17 15'3 to-5• tl--r 11'-3' 4'4' 123 MPH 0'$ to-g• 101-7P r-11• 9-5 9.11• 5-S 8'3 54• 7$ 123 MPH 1T4• 21'$ 21'-17 15'-r 193- 19-17 1r$ iS$ IS•it• 4'-0• 110 MPH 11'-T 77-Ii• 173' 11'-T 17-11' 173' 9$ 1014r ta5' 4•-0' UO MPH 8'4' 7014' I11$ T-S 95• RK T-11' S-t' 7$ 130 MPH is-1' 2014• 20'-9' 17'-11 18'3' 19-1' It•-i t' 15•Y 1S$ 4'•7 150 MPH i1'-r 17-71• 17$ 11'-T 17-11' Ir$ 5.11' 140 MPH 5-11• 8'$ 9$ S-i t' 13' 7,4' 7,3• 74' 140 MPH 17-9• 15-9' 15-1' 17-9' 1S-7 15-1• 11.4• it-Y 14'$ 4'-7 150 MPH s-I r 8'$ s$ W.V. s$ r-0" T-r r-r ISO MPH 17-9• is'-9• is-1' it-9' is-9• is-t• 101-9' 13-9• u'$ 4'-7 r x 15 x 0.037 Pontis roan Nola:Total roof W141wiwidth= weft+wall width♦ Open Structures Seven Rooms Glass E Modular Room Over"/ overlu g- Note:Total root panty WKM=van Wk M.war wigh+owrhsrg. Wind Mono-Sloped Roof i Attached Covers Enclosed Cantilever SII Region 1E2 3 4 /E2 34 1E2 3 4 AN SEAL span span spm seen span span span span span Rook 100 MPH 28-Y 25-17 24'.17 2z4r 24,_r23-9' Iso• mr 75-r +•-0• SHEET 110 MPH 23'-T 25-77 24--17' 201.3' 27$ 21'-71•. 14'-11• it-77 is-1' 4'40• 1 •1 P-1 1 - 4' 123 MPH 21'-r 28$ 27-17 754• 211-5 19.9' IX T f1•-9' t4'-3' r-7 130 MPH 19$ 21'-17 21'-1• 1s4' 19-3• 18'-r 17$ 11•-0" 13$ r•7 110 MPM 13.4• W-/1- 14'-5' 174• 14'-17' 14'5• ii'-Y 13-1• 17-0' 1'-11' 150MPH 13'4' 14'-11' 14'-5' 1 13'4' 14•-11' 14'3 tad' 11'-T Note:Tobi rod panel width a room width.well width+overhang 07-08-2004 OF • I i General Notes and Specifications: 2.W ' The following extrusions are considered to be"Industry Standard"shapes.The properties are based on die 2.00" 2.00' A=0.666 h' drawings furnished by Florida Extruders International,Inc.. 2.00• WT=0.763 p.l.f. - _ , I A=0:613 in.' (1)if8 x 1-1/2• UPRIGHT: '` 3.00" ` A=0.716 m. 1.00' A-0.243 h a I 1 WT=0.702 p.l.t a m S.M.S. 6' A 1259 h. 0 0.044 + 1x=0.694 in.• Sx=0.466 in? WT=0.278 I f WT=0.820 p.Lf a FROM ENDS.TOP r Ix=0.773 h.` Ix=0.136 hp ix=0.477 in.' + g WT=1.443 p.Lf. d A=7.990 in! OR BOTTOM AND 0.044 BEAM: t, bb re Sx=0.515 In.* o 0.044 N Sx 0.137 in' 0.071 # T ' N Sx-0.477 in.a 0.04 6�3-T6 0.055 + ro_ ix-8.746 h. WT=2280 pl f. @ 16.O.C. ly=0.406 h.• Sy=0.410 in? (� -* 6063- 6063-T6 Sx-2.490 in? Ix 21.981 im 200" 0 6063-T6 -. 1"x 2"x 0.044"OPEN BACK SECTION 3"x 2"'x 0.070"PATIO SECTION 2"x 3"x 0.045"SPECIAL SECTION N Bo63 o.o6r } 6m_T85 h a w " = o sos3-Ts w = 1 x2x0.0440E SCALE: Y=1.0" SCALE: r-r o" SCALE: r r o" OPEN BACK SECTION WITH 2"x 2"x 0.044"PATIO SECTION 1.00" -3.00' 3.00• _ A=0.287 h.a '� SCALE. r-1'0' = A-1.081 hP A=0.562 h' STITCH W!(t)#8 S.M.S. 24.O.C. (1)#8 x 2-1l2• WT 0.329 JS. P - . _ WT-1.122 p.l.f. TOP AND BOTTOM S.M.S. 6- b(- 1238 .Lf. 2.D0• tx=0.368 n P . FROM ENDS,TOP _ . a Ix= .762 n. i 0.044 g a 0.09 $ Ix=1.523 h.' $ 0 A-0.647 m. Sx=0247 0. + 0.09 + ,, OR BOTTOM AND Oa N a = vi Sx=0.920 h. 2 W7 971 J.f. I • , x 7"x 0.055"x 0.120" o. P Sx=1.015 tn. STITCH WI 1 #8 S.M.S. 24"O.C. 16'O.C.OR 6063-T6 O 0.044 6063-T6 T TOP AND BOTTOM PILOT UPRIGHT: SELF MATING BEAM HOLE 6063-T6 rJ a w w SCALE: r=1'-0" 2"X 9"X 0.072"X 0.224w CAP AND(1)118 X - Ix=1.295 h.' Sx=0.654 h. 1"x 3"x 0.044"OPEN BACK SECTION 3"x 3"'x 0.093"PATIO SECTION 3 x 3"x 0.045 FLUTED SECTION SEF TIN BEAM 1/2"S.M.S. BEAM` L MATING INTERNAL 6' _ _ SCALE: 2"-1 0 =1,-0, SCALE: 2"-1 0 2.00" y-0.540 in. Sy-0545 h' SCALE: r FROM ENDS,TOP SCALE r=1'-0' 2.00• A-0.424 h.a OR BOTTOM 6063-T6 WT-0.486 p,Lf• AND 16'O.C. CO Z Ix-0.232 h.' _ w 0 2 W 3.00' O o.oaa + a z.00" 2"x 2 x 0.044"PATIO SECTION WITH A .250 xt. i N Sx=0234 h. � � � � 2 2.00" 0 Z 0 2"x 2"x 0.044"PATIO SECTION LC (9 V �k 6063-T6 -'I' a c WT-2.578 plf. J co A=1.438 in.* A=0.772 in. 0.055" o ix=15.427 in.' SCALE: 2"=1'-0• (!) (9 Z J w } Z x 2"x 0.044"PATIO SECTION 0.1 - + � vyr=1.648 p.lt WT=0.885p.1.f. Sx=4.408 In? � Z 0 ? 0 Q - 0.046" S _ 1- !- SCALE: 2"=1'0" _ Ix 1.940 h.• !x 1.984 er +` 0 6063-T6 - - - � S A=0.496 in.* Sx-1.323 h' c Sx=0.959 in a 2.00' g A=0.592 in? W J Q 2 00' a o = W { A 2.355 h. � 6063-T6 1 6063-T6 WT 0.676 p.lf. tY cp 1 I WT=0.568 pJ.t WT=2.698 p.Lt V = LD �t _ 0.044 UPRIGHT: J Z Ix 0276 h.• t, 0.0ar + Ix=26.481 m.' U N - 0.055• + a Sx=0.279 h a a a IX=0.457 W Sx=0.355 in' } _ 0 N 3"x 3"x 0.125"PATIO SECTION STITCH W/(1)#8 S.M.S. 24.O.C. Sx=5.885 in C �3- STITCH W/ 1 #8 S.M.S. 24"O.C. 0.044 + S V } H O TOP AND BOTTOM 606 -T N _ 3 s U SCALE: r 1 0" _ . = a Q 2"x 2"x 0.055"PATIO SECTION TOP AND BOTTOM ly-o.3s9 x,. Sy o.3ss x,. Q O -5 W 6063-T6 SCALE r=r•o. Z [L - SCALE: W v 2"x 4"x 0.046"x 0.100" SELF MATING BEAM W/INSERT W 5 o = a � 3.00' A 0.451 h. _CUM SELF MATING BEAM SCALE: r=1•-0 1"x Z"x 0.044"SNAP CAP SECTION WITH Z a WT-0.620 p.l.f. SCALE: r=T-0" STITCH W/(1)#8 S.M.S.@ 24-O.C. w V - p, Ix=0.336 in A=1.838 h a TOP AND BOTTOM 2 x 2"x 0.044"PATIO SECTION co O.oaS + $ a _ SCALE: r=1'-0• J SX-0.336 In N WT-2221 pJ.f. w w w Q �k 6063-TB Ix=4.654 h.• 2.00• 2 x 9 x 0.082"x 0.306 0.12 + a 1 Sx=z.az7 e,. SELF MATING BEAM 3"x 2"x 0.045"PATIO SECTION sols.T6 2.00" _ , �` SCALE r=1'0" I SCALE: r 1-0" 1 a N N N A In? O • •- 0.964 h. _ �N 2.00" A-1.853 h' (l WT=1.105 p.l.f. `O T * A-0.451 W w WT=2.123 p.Lt y I I 4"x 4"x 0.125 PATIO SECTION o.oa 8 b i 9" Ix= ++ e + 3.691 m. . 2.00' 0.0T Ix-16.638 h. +-+ +�Z WT=0.620 J.f. vi + 6 D .4f rz SCALE: r=1-0• v N Sx=1.468 XI, a � Q) Ix=0.640 h. SX=4.157 h. Y . 0 6063-T6 C J_i a 2.00'SX=0.427 n 6063-T6 a0.04 aA=0.462 h.6063-T6 m 0.oWT- J.t 0.552 p o (O O x m �- -r�- 2"x 3"x 0.045"PATIO SECTION 0.0 + Ix=0.609 in.• w rii � Sx=0.406 in.' A=3.032 In' W J rn O SCALE .M.S.Q 24.O.C. STITCH W/(1)#8 S.M.S.@ 24-O.C. ad 6063- WT=3.474 p.lf. LL AND BOTTOM TOP AND BOTTOM N 2.00" 2"x 3"x 0.050"TILT SECTION 2"x 8"x 0.07 " " o:o9Y + � Ix=a2 583 in. W a J 2 x 0.2242 w n a w Sx=6.504 n. a 2 x 5 x 0.050 x 0.120" `x A=0.685 h. Cs = SCALE: r=r-0. SELF MATING BEAM SELF MATING BEAM 6063.T6 ` w m WT 0. J.f. � 785 P 2.00' SCALE: 2"-r-o" 3 Ix=1.393 in• SCALE: r=1'-0• cc >a 0.050' + Sx=0.697 h' A=0.582 h' STITCH W/(1) _J s #3 S.M.S.®24' 6063-TB WT=0.667 pJ.f. 2.00' Ix-1228In.' O.C.TOP AND 0.050"- + Sx=0.614 ha BOTTOM TOe 2"x 4"x 0.050"PATIO SECTION -mak 6063- A=1.095 h' 2"x 10"x 0.092"x 0.369" SCALE. r 1-0" wr- - s ' ��kllcccc 1.255�- ix=s.919hJ.t. 2"x 4"x 0.050"TILT SECTION 0.050- P SELF MATING BEAM � ! 2.00' SCALE: Y=1'0• m Sx-1.965 in.' SCALE: Y=1'-0" I A=0.954 h a 6063-TS WT=1.093 plf. o SEAL !, ix=2.987 h.• 0.06Y + a Sx-1.195 in? STITCH W/(1)98 S.M.S.@ 24'O.C. SHEET 6063-T6 TOP AND BOTTOM 2"x 6"x 0.050"x 0.120" 7A 2"x 5"x 0.062"PATIO SECTION SELF MATING BEAM p SCALE: 2'-1'0" SCALE: r=1'•0• 07-08-2004 OF o (2)II!x 2-11rOR S.M.S.@ e 3.00 �`-4.00' 4.000" FROM ENDS,TOP OR BOTTOMAND I f @ IW D.C.OR PILOT HOLE W/CAP A=1.367 in AND(t)08 x Ilr S.M.S.INTERNAL B- 0.093' � m Ap 1.323 n' FROM ENDS,TOP OR BOTTOM WT=1.51.16 p.lf. _ AND @ te'o.C. g + $ be-2.655 in.` o to _.. WT=1.516 plf. O.D6r + - b(=7.027 n` LOAD APPLIED NORMAL TO THE �c-- Sx=1.323 in' - ci - Sx=2.342 W 1 6063-Ts A=6.249 n' 6063-T6 4'DIRECTION ��1kc 0.082• + + $ A=4.710 In.'p wr-7.160 pl.f. a WT=5.397 p.l.t• + + o Ix=101.446 in.` 1"x 3"x 0.044"OPEN BACK SECTION WITH Ix-52.963 in., 0.092• Ul sx=tssot l, 3"x 3"x 0.093"PATIO SECTION CORNER POST Sx=17.770 in' 6063-rs SCALE: 2 -l 4r 6063- srlrcH wr(1)#8 s.M_s. za•D.C. 2"x 6"x 0.062"SNAP EXTRUSION STITCH W/(1)#8 S.M.S.@ 24 TOP TOP AND BOTTOM OF EACH BEAM SCALE: 2 =1'-0• (Z) x 2-tll s.Ms.@ 6- 1.0(r $ TOP AND BOTTOM OF EACH BEAM 2.00' FROM ENDS,TOP OR BOTTOM AND @ IS-D.C.OR Poor HOLE W1 CAP A-1.367 m.' (2)2"x 9"x 0.082"x 0.306"SELF MATING BEAMS AND(t)N6x 1/2-S.M.S.INTERPIAL B' ¢},, WT=1.5(6 p.Lf. FROM ENDS,TOP OR BOTTOM 3 Ix=1.892 n` SCALE: r=1'-0• + AND @ 1B-O.C. + Sx=1.26'1 in --'k A=1.447 in.' LOAD APPLIED NORMAL TO THE 6063-T6 4.000' a }� WT=1.658 p.IS. S DIRECTION 4.00' 0 0.062' + b be=10.151 kw! Q Sx-2.900 na D 1"x 3"x 0.044"OPEN BACK SECTION WITH m (2)2"x 10"x 0.092"x 0.369"SELF MATING BEAMS 6063-Ts O W 3"x 3"x 0.093"PATI)SECTION WALL POST WITH 2"x 4"x 0.038" O ' o Z O SCALE: 2 -1'-0' WT 6 69477 pJ.f. SCALE: 2"=1'-0- O LI) U $ Ix=85.165 n` fq (0 Z J (z)4E x z-trz-S.M.S.@ e- 1-�'o + o Sx=17.007 n� 2.00' 2"x 7"x 0.062"SNAP EXTRUSION Z Ul z U Q FROM ENDS.TOP OR BOTTOMAND 0.09r '�`' 0 SCALE: 2'=1'-0' � (/) 0 W @ 18.O.C.OR PHOT HOLE Wr CAP A=1.654 n' 6063-Te A=0569 n' o(f W j W 0 MID(1)011 x t/Y SACS.INTERNAL r !, WT-1.895 p.l.f. STITCH W/(1)#8 S.M.S.@ 24.O.C. 0.046 + 3 A --0.652 569Ir pJ.L U W OD W CD FROM ENDS,TOP OR BOTTOM all a lx=2260 in. TOP AND BOTTOM OF EACH BEAM r; AND @ t6-D.C. c' Sx=1.507'in a be-0.332 ii` J p 0 .Z LOAD APPLIED NORMAL TO THE I 6063-T6 Sx=0.332 n' V N 0 r DIRECTION 6063-T6 U >- U W (2)2"x 10"x 0.092"x 0.369"SELF MATING BE2"x 2"x 0.045"SNAP EXTRUSION Z U. U2)1"x 3"x 0.044"OPEN BACK SECTION WITH - AMS W r W 0 SCALE: r-1'-0- SCALE: 2"=1'-0 3"x 3"x 0.093"PATIO SECTION WALL POST w Z L SCALE r-V-V U - 4.00• 2.00• fn A=0.591 in.' 7 4.00' }},, WT-'0.677 plf. Q N 0.045" + i5 Ix=0.812(n.` d " Sx=0.545)n' A=3.706 IrL2 6063-TS N A=4.429in.' _ 0 WT=4.2411 p..If. O.Dr + + WT=5.075 plf. W Ix=33.276 n` ,� 2"x 3" ~ bt=48.889 In.* x 0.045"SNAP EXTRUSION a o.or + + $ s�x63 B.r36t4 n' Sx=9.754 In' SCALE: r=lAr y LL v 6063-T6 m Y STITCH W/(1)#8 S.M.S.@ 24.O.C. C STITCH W/(1)#8 S.M.S.@ 24.O.C. TOP AND BOTTOM OF EACH BEAM 200- TOP AND BOTTOM OF EACH BEAM (1) a m (o Jxvh S V-cq W w -'k A=0.682 n' LU Z iX o.oas + $ wr=0.781 p l.r. (2)2 x 8"x 0.072"x 0.224"SELF MATING BEAMS • Ix= 0.7 1 p V LL o d x 8"x 0.072"x 0.224"SELF MATING BEAMS W/2"x 4"x 0.038" W SCALE 2"-7'-0 SCALE: 2"-l-(r Sx=0.816 in' F&I'lC i n w 6063-T6 oX�- 4.00' + TI = 3 w aD 4.00 = T1 LQ >a N �t 12 N �-�F e 0 A=4.702 in' a c A=3.980i� WT=5.388p.l f. yr WT=4.560'p.l t Ix-62.947 n` Sx-9.770 n.• 0.072'-, + + � Sx=11.425 n' 2"x 4"x 0.045"SNAP EXTRUSION a a6063-T6 ' 7 O.Or + + $ 6063-T6 SCALE: r=1'-(r , 0� a STITCH W/(1)#8 S.M.S.@ 24'O.C. STITCH W/(1)#8 S.M.S.@ 24'O.C. TOP AND BOTTOM OF EACH BEAM Ix I Rx R ` TOP AND BOTTOM OF EACH BEAM W H t1 t2 A Sx SSection A loy in. in. in. I in. in. in. in., in. in.a in. in. HEET 6063 T-5 4 H1 61 0.08 10.081 1.18 3.81 4.05 0.96 3.40 L 1.8 1 1.65 o+ Gutter H24 1.89 B 1.44 R N Edge 6063 T-5 5 Ht 5 0.065 0.065 0.96 2.45 4.43 0.73 1.80 L 1.59 2.14 -'k H2 4 1.49(8) 1.74 R 7 B3 (2)2"x 9"x 0.072"x 0.224"SELF MATING BEAMS (2)2"x 9"x 0.072"x 0.224"SELF MATING BEAMS W/2"x 4"x 0.038" p SCALE: r=1'o' SCALE: r=1'-0• 07-06-2004 OF O Table 9.1 Allowable Loads for Concrete Anchors Table 9.3 Wood 3 Concrete Fasteners for Partially Enclosed Buildings Table 9.5A Allowable Loads 3 Roof Areas Over Posts scree,Sim Depth �� . Allowable Loaas Loads and Areas for Screws in Tension On Table 9.10 Alternative Anchor Selection Factors for Anchor/Screw Sizes Only for Metal to Metal,Beam to Upright Bolt Connections pacing Maximum Allowable-Load and Anrrbotable Root Area for 120 MPH Wind Zone(35.53 91 SF) O or Enclosed Structures 27,42#/SF Moho to Metal d=diameter (in.) Sd(b.) Tension Shear f � (For Wind Regions other Man 120 MPH,Use Conversion Table at Bottom d Mte page) - ZAMAC NAAM Drive Anchors Fastener -.... _.... Anchor Size 08 010 #12 Or stir 318" - ( ) CONNECTING TO:WOOD ter PARTIALLY ENCLOSED Buildings 1K" 1.10 1-7/4' - - 2738 2,W Fastener 4n of Number of Fasteners dlenh, min.edge min.etr. No.of Fastemrs/Root Area(SF) - 01h 08 1A0 oxii 058 OA6 0.27 0.21 1-114 1 Diameter Embedment 1 2 3 4b^C° to Nr. 1!Ma 21 Area 3 f Ares 4/Ana 1 TAPPER Concrete Semrs IN, tin Sh" 1,454.53 2,908-105 4,362-159 5,819-212 MO 0.60 1.00 0.72 0.57 0,33 0.26 i' 264#-7 SF 5289-15 SF 792#-22 SF 10568-30 SF 3116" 7-int' 15116' 289# 167# 9117 316• Th' 1,894-69 3,786-738 5,682-2D7 7,576.276 #12 0.58 0.72 1.OD 0.78 0.16 0.36 1/4"e 1-10 396#-11 SF 7920-22 SF 1188#-33 SF 1564#-45 SF 15116" 371# 2599 3//" 314' 1" 2,272-82 4,544-166 6,816-249 9,088-MI 014 0.46 0.57 0.76 1.00 0.59 0.46 2-1? 660#-19 SF 13200-37 SF 19WO-56 SF 2640#-74 SF1 t• 7-7A" 3,030-110 6,060-221 9,090-332 12,120-442 5116• 027 0.33 0.48 0.59 L00 0.79 714' t•1H' 7-114' 427# 200# t' 312#-9 SF 5240-18 SF 936#-26 SF 1248#-35 SF 1314' 1-1/4' 5440 2160 716^ 021 026 0.36 058 0.79 1.00 are' 1-1? 1-716' 511# 402# 91Fa 1-t? 4689-13 SF 9368-z6 SF hour-40 SF 1672#-53 SF Table 9.5B Allowable Loads B Roof Areas Over Posts Z-1? 78W1-22 SF 15600-44 SF 23400-66 SF 31200-88 SF for Metal to Metal,Beam to Upright Bolt Connections Alternative Anchor Selection Factors for Anchor/Screw Sizes 1314' 3.3/8" 7039 45W Pti9 r 356#-10 SF 7129-20 SF 10680-30 SF 1424#-4D SF partial Enclosed Structures 35.53#ISF concrete and wood Anchors POWER BOLT(Expansion Bo 3!6's 1-i? 534#-i5 SF 106!7#-30 SF 16D2#-45 SF 2136#•60 SF Partially Dyna Bolt(1-SM sed 1-114• 6210 261# 2-1? 890#-25 SF 1780#-50 SF 2670#-75 SF 35600-100 S Fastener (concrete screws:r maximum embedment) 2-111'embedment respectively) 918^ 3' 1-7/8" 9360 751# tlfann. min.edge min.e:tr. No.of Fasteners/Roof Area(SF) Anchor CONNECTING TO:CONCRETE Min.2,500 ps for PARTIALLY ENCLOSED Buildin Anchor Size 3116' 1k 3fi' gine LIF 7fr '. LF 3.1? i-7f8' 1,5750 1,4258 a6stence te r:tr, 1!Ana 21 Ana 3l Am 41 Area Fastener Length d Number d Fasterhers tlr S 2-t? 2,332# 2,2200 114" lir 516" 1,454-41 2,908-82 4,362-125 5,819-164 3116" 1.00 0.83 0.50 3118' 1.00 0.46 POWER STUD Anchor) Diameter Embedment T 2 3 4 916• 316' 7K• 1,894.53 3.788-107 5,682-160 7,576-273 114' 0.93 1.00 059 UT 0.46 1.00 PE OF FASTENER-"Quick Sof Concrete Servs Rawl Zamac Nellie or E alert 7K" 2-314• 7-1/4' 612N 326# 3/F 314" T' 2272-64 4,544-128 6,816-192 9,088-256 31F 0.50 0.59 1.00 114"a 1.1? 2330-8 SF 1660-17 SF 699#-ZS SF 932#-34 SF 3/6" 4-1/4' 1-7lB' 1,3580 9210 tfr 7" 1-Im- 3.030-65 6-060-171 9,090-256 12,120-341 r Z700-10 SF 5400-20 SF $109-30 SF 10801-39 SF 'Multiplythe number d pb screws x size d whdhorhaew desired wd mord up b the nmrt even number d screws. tfr B* 2-t? 22710 1,218# Notes for Tables t.S A,B: Example: It(10)#8 screws ars required,In number of 010 screws desired is: PE OF FASTENER=Concren Screw(Rae4 Ta or E ivalenti Load norm JQ S/a' r 2.111' 3288# 22020 t.Tables t5 A 6 8 are Weed m 3 accord 0.6 x 10=(8)#10 ' 3/1Fa 1-1? 2468-7 SF 4920-t4 SF 7380-21 SF 9841-26 SF for E DistancesMMultipliers liven 50 Notes: wind gusts al 120 MPH:Eiponxe'B':i=1.0. 1.Concrete screws an 6nniNd b r embedment by manufacturers. 73N' 3178-9 Sf 8340-t8 SF 951#-27 SF 12680-36 SF For,, F, -8 screen naps mWOply the Giess 2 Values I ded we slowed loads wah a an"facts of 4 applied. Allowable ? owable Load Coven Multipliers Iwo 1-/ 365#-10 SF 7300-2t SF 10950-31 SF 14608-41 SF roof/Partially Enclosed load:i of ams above Edge Allowable Load � Z 3.Products equal b read may be SubsOOred. for Edge Distances More Than 5d 1-314" 4658-13 SF 9300.26 SF 13950-39 SF I KW-52 SF by 1.3. _ Distance Tension Shear Q W 1.Anchors recaivig kxeds perpendicular b Ite dlenrter we in Iwnion. Edge Mo prom 3/Fa 1-1? 437#-12 SF 874#-25 SF 13110-37 SF 17400-49 SF 2.Minimum spacing Is 2-12d O.C.for screws O 0 i S.Allowable loads we Increased by 1.00 for wind bad. Distance Tension Shear i bole srd 3d O.C.fa rivals. 12d 1.25 - O 6.Mnknum edge distance wW censer b carder spacing shall W 5d. Sd 1.00 1.00 7-3Ex 601#•17 SF 12028-34 SF 18038-51 SF 21040-69 SF 3.kshdrmxn edge distance N 2d for screws, lid 121. 1: 0 O E OF FASTENER=Expaceion Bons awl Power Bolt or E ivalent O V ' 7.Anchors receiving bads parallel b Inc diameter aro chew loads. ad 1.04 120 !hogs,and rivals. led 1.18 2.00 6 A 133%Increase has been applied because wind lupe/k oNy bed. 316"a 2-1? 1205#-34 SF 2410#-6s SF 3615#•102 SF 4820#-136 } (n O Z W 7d 1.08 1.40 fld 1.11 1.80 ad l.t t 1,60 3•t? 13030-37 IF 26060-73 SF 39098-110 SF 5212#-147 SF ad 1.11 1.60 Z W Z 0 J Example: 9d 1.71 1.80 12.6 3' 18068-51 SF 3612#-102 SF 5418#-152 SF 7224#-203 SF 7d 1.09 1.40 ; 0 C-) in Determine to amber d concrete whdhors required for a pod tOd t.ta Z.00 5• 1993#-56 SF 3966#-112 SF 5979#-166 SF 7972#-224 SF 6d 1.p4 120 � J i� Q enclosure by dividing the upil lead by to ander*lowed bad. lid 121 Nom: Sd 1,oD 1.00 W j W ~ { For a r%6 Wan witlx aback#=Tom'O.C" 1.The mi kraum distance from ga of the WIND LOAD CONVERSION TABLE: glared apse=2V-S(Table 1.1) t2d 725 �le b Ica concrete anchor padrup For Wind Zones/Regions other than 120 MPH U m O Z UPLIFT LOAD=IM(BEAM SPAN)x BEAM 8 UPRIGHT SPACWG between anchors shol runt be less than 5d whore d (Tables Shown),rmrOpy allowable bads and rod J Table 9.6 Maximum Allowable Fastener Loads H Q r' Ali is 040 anchor diameter. areas by Me corwersan faryor. 1" 0 N 0 NUMBER OF ANCHORS= 1/2(20.17)x r x 10#/Sq.FL for Metal Plate to Wood Support V 2.Allowable bads have been iweased by 1.33 WIND APPLIED CONVERSION Metal to D } ~ ALLOWED LOAD ON ANCHOR for wind badhhg. REGION LOAD FACTOR U V NUMBL-R OF ANCHORS= 711.700=1.67 3.Allowable roof areas are based on keds for ttr 4 ply 98^4 LI'4 Q O Q W 4 # - Glass/Pwfialy Enxiosed Rooms(MWFRS);I= 1 0 30 7.11 Stew Pull Out Steer Pule Out Show Pull Out � LL CO) Therefore,use 2 anchors.ate(1)on each side or upright. 7.00. 08 Diameter 93 48 113 59 734) 7b1 W Q 4.4.For peas/Enclosed Rooms and Sections 1 120 1•� 070 100 55 120 W 147 78 W O Table is based on Rawl Pfoducls'allowable bads for 2,500 p.s k concrete. 123 37 1.00 e 2 use a multiplier b root weed 7.30. Z O 170 42 0.94 #1Z 116 71 131 78 143 94 Z 04 140 48 0.Table 92 Wood 3 Concrete Fasteners for Open or Enclosed Buildings 158 56 0.H #14 132 70 145 all 157 105 to Loads and Areas for Screws in Tension Only - J Maximum Allowable-Load and Attributable Rod Am for 120 MPH Wind Zone(27A2 91 SF) Table 9.7 Aluminum Rivets with Aluminum or Steel Mandrel Q ',.. or Wind Roglons other tan 120 MPH,/Ise Conversion Table at Bottom of ere Aluminum Mandrel Stele Mandel CONNECTING TO-WOOD for OPEN or ENCLOSED BW Rivet Diameter Tension(Ws, Stier Temion Show Fastener Length d Number of Fasteners Table 4.4 Maximum Allowable Fastener Loads tIF 129 ns 210 325 Diameter EmWdment 1 2 3 4 for SAE Grade 5 Steel Fasteners Into 6063 T-6 Alloy Aluminum Framing 93r .187 263 340 490 1" 2640-10 SF 5280-19 SF 7920-29 SF 1058#-39 (As Rec°m SF m mcled By Manufacturers) U4^a 1-1/r3940-14 SF 7920-29 SIP t 188#-43 SF 1584#-58 SF SeN-Tapping g and Machine Screws Abwabte Loads Tensile 262 375 d15 720 W Q 2-1? 66M-24 SF 132D#-48 SF 1980#-72 SF 26400-96 SF strergM 55,040 pat;show z/,000 psi Table 9.8 Alternative Angle and Anchor Systems for Beams Q. j� /" 3129-11 SF 6240-23 SF 936#-34 SF 12480-46 SF screw Allowable Tenses Loads on screws for Nominal Wag Thickness('!')(Ms.) Anchored to Walls,Uprights,or Carrier Beams 2 LL 91Fe 1-1? 4680-17 SF 936#-34 SF 14040-51 SF 1872#-66 SFMaximum Screw I Anchor Stu a SireKNd O.OM' 0.050" 0.055" 0.07r 0,082" 0.092- 0.125• OZ 2.1? 7800-28 SF 1560#•57 SF 2340N-85 SF 3120#-1 t4 S 040 182 207 226 298 310 381 Extrusion Type giu Description To Wag TO M 'f 1' 356#-13 SF 7129-26 SF 1068#-39 SF 1424#-52 SF #10 211 240 264 345 393 441 - Upright I Beam Z SII NFe 1-11Y 531#-19 SF 106x#-39 SF 1602#-Sa SF 2136#-78 SF 912 233 265 292 3172 435 4118 _ t'x i':0.045" 3116' MO - W<^ Angle Yx 1's 7118'0.053" NIS* #12 2-1? 890#•32 SF 17x00-65 SF 2670#-97 SF 3560#-130 S #14 278 316 347 455 518 581 789 C r ro Angle I's x Y x i/a• .12 3116' 012 (L3 j H 1/4" 267 303 333 436 497 558 758 m W 7 .. CONNECTING TO:CONCRETE In.2,300 ter PARTIALLY ENCLOSED BW 1.1?x t-7?1116'O.D6r fir 012 ' I Fasterne 9tF 317 395 431 5611 647 726 986 Q Length d Number of Fananera 3/g• . 117 173 521 682 776 871 1,184 1.1?x 1.1?3116.0.1 114' 014 W N Z 2-'X Dtemeter Embedment / 2 3 4 1.10 x 7-1?1/8.0. 111' 014 W J O O •• 172" 0.50" 556 531 691 909 1,035 1,162 1,578 1314'x 1-374'x if8"0.125 114' #14 sA X TYPE OF FASTENER- Quick Set"Concrete Screw Rawl Zarsac NaiNn er ivalarr 0 LL IL< 1/4"6 1-1? z33#•e SF 4668-17 SF 4098.25 SF 932#-34 SF Allowable Show Loads on Screws for Nominal Well Thickness bs r x r x 0.093- 318" 378' V W W a screw Single shear r x r a 118-0.125• 916• 5116• W -� 7 270#-10 SF 510#•20 SF 8100-30 SF INN-39 SF rxrx311 0.313' 1? 1? C ?t" TYPE OF FASTENER=Concrete Screw awl Tior E ivSize Nd 0.044• 0.050" OASS• O.OTr 9.06r 0.09r 0.125• O X 040 0.181• 175 199 219 286 326 366 U-channel 1-34'x 1-3/4'x 1-311'x 1B' 31W #14 ` O p 3l1Fa 1-1? 216#-9 SF 492#-10 SF 738#-27 SF 9610-38 SF _ Ucharval 1'x 2-7/8"x is 0.050" 16" 916 z m 1-311' 3170-12 SF 834#-23 SF 9570-35 SF 12680-40 SF 010 0.19E 203 230 253 33Z 378 124 3 W #12 0210' 224 255 280 367 418 438 U-�� 1-1?x 2-1/8•x m,w%DA43' V2- #11 j p 1N"• 1-1? 365#•13 SF 730#-27 SF low-40 SF 1460#-53 SF ole: screws b .era. post bcc i11 0250' 267 303 333 436 197 558 156 t-3N' 185#-17 SF 930#-3/SF 1395#-51 SF 1860#-56 SF J 1/4" 024E 258 291 320 419 477 535 727 LO^a 1-1? 437#-76 SF 8710-32 SF 13710-40 SF 1719#•Bt SF Table 9.9 Minimum Anchor Size for Extrusions 13X1' 601#-22 SF 1202#•NSF 18030-66 SF 24040-86 SF 511E 6.It 333 379 117 546 621 697 947 3A" 0,375' 400 455 500 655 745 836 1,136 Wal Connection TYPE OF FASTENER=Expe Boles Rawl Power Bol or E 12' 050' 533 806 667 BT3 991 1,115 1,575 Exbuslons Wag Mehl U ht Carnbreb Wood 310 2-t? 1205#.14 SF 24100-BB SF 3615#-132 S 18200-176 Allowable Stew Loads am Screws for Nominal Was Thickness III r x it t/P 014 1/4" 1N' 3.1? 7303#-40 SF 260610-95 SF 3909#-143 S 5212#-190 S screw poOpN Show 2'x9• tl4' iU 1/4' iia' lire 3' 1606#-66 SF 3612#-132 54180-1985 7724#-263 rxF 1/4' #12 1/4' #12 L+Q 5 1893#-73 SF 3986#-115 59798-218 S 79720.291 546 Na O ou" 0.050" BASS' 0.070 0,062" 0.080 0.725• r s r 3118 #10 3/76 #70 [r e M O.tfi4^ 350 398 436 572 652 732 r x F er less 3116' #8 3116' #8 Itg(D LOAD CONVERSION TABLE: Mg 0.790^ 406 160 SDB 664 756 848 d 1.The milkman distance team the edge d the concrete b For Wind Zones/Regio n other Dan 120 MPH Note: the oonccrele anchor wed specig between anchors shat not M2 0210' 448 510 560 734 B36 876 W less tlhan Sd when d is the anchor dianheter. (Tables Shawn).mWipy stowable bads wed roof 074 0250^ 534 BOB 668 872 994 1116 1516Waltbfw^connectionsand upright^vmmum anchor s¢°s shag W used for caper 9lANr 2.Allowable leads have been Increased by 1.33 for wind •re/S M the conversion Nola. U4" 0240" 512 582 640 sm 954 1070 1454 SEAL bads WIND APPLIED CONVERSION 97F 0,3125" 666 758 403/ 7092 1242 1394 1094 _ HEET 9.Allowable red wen we Weed on leads ter Glass/ REGION LOAD FACTOR 3/F 0.373• .800 910 15U- 1310 7190 1672 2272 Enclosed Rooms(MWFRS);1=1.00. 100 19 1.19 ttr 0.50' 1066 1212 1331 1746 1988 7230 3030 1.For pwllely enclosed puibkhgs use a multiplier b rod 178 23 !A8 Notes: area r 0.77. Iwo sides of members. w 120 27 7.00 1.Screw goes through S.For seefxm 1 d 2 mulOpy rod areas M 1.38. 123 29 0.97 2.AI barrel lengths;C°kus lndusbial Quarry.Use manufacturers grip range to match total 130 32 0.92 wall thickness of connection.the tables to soled rival substitution for screws of ander 748 37 D.85 specifications in drawings. 150 43 0.79 3.M..W2-m thickness d frame members N 0.036 aNminum and 26 ga.steel. 8 07-08-2004 OF