Loading...
2321 MAYPORT RD - DOLLAR TREE ENGINEER CALC 1 3 CLARK, GEER, LA THAM - JOB 1405-137 Dollar Tree Atlantic Beach,FL y�swa±r'�.,,r : :,i,,,.,c... :• & S ASSOCIATES, INC. SHEET NO. 1 OF 1617 ENGINEER - ARCHITECT CALCULATED BY DAB DATE 11112/2014 3901 Springhill Ave '! F I L E CPPV SCALE CHECKED BY N.T.S DATE Mobile,Alabama 36609 (251)344-7073 FAX(251)343-9179 Calculate Wind Loads . -FLABLDG CODE 2010/ASCE 7-10 IND LOADS: 130 mph(Vult) 103 mph(Vasd) C Exposure II Risk Category 0.85 Kd DIRECTIONA FACTOR Table 26.6-1 RESSURE COEFFICIENT Table 30.3-1 1 Kzt TOPOGRAPHIC FACTOR Sect 26.8 33.1 qz(PSF)VELOCITY PRESSURE ASCE EQ 29.3-1=0.00256'Kz•Kzt*Kd`V2 0.6 Factor for ASO load combinations _ 1.29 A(adjustment factor for exposure and height) MAIN WIND FORCE RESISTING SYSTEM(MWFRS) (Fig 28.6-1) 0-5 Roof Angle(Degrees) A B C D E F Q H Egh Goh Pnet30 26.8 -13.9 17.8 -8.2 -32.2 -18.3 -22.4 -14.2 -45.1 -35.3 Fig 28.6-1 Design Psf 20.7 -10.8 13.8 -6.3 -24.9 -14.2 -17.3 -11.0 -34.9 -27.3 =Pnet30 x A x 0.6 88 ft Building Width(W) 113 ft Building Length(L) 18 ft Building Height(h) 7.2 ft"a"distance Not<3.0 ft or 3.52 COMPONENT&CLADDING(C&C). (Fig 30.5-1) Zone Pnet30 Design Pressure=Pnet30 x A x 0.6 Roof Zone 3(10 sf Effective Area) -76.8 -59.4 Roof Zone 2(10 sf Effective Area) -51.0 -39.5 Roof Zone 1(10 sf Effective Area) -30.4 -23.5 Wall Zone 4(20 sf Effective Area) -31.6 -24.5 Wall Zone 5(20 sf Effective Area) -38.0 -29.4 Wall Zone 4(100 sf Effective Area) -28.4 -22.0 PARAPETS (Use h=30'-Conservative) MWFRS (Sect.27.4.5) 1.5 GCpn Windward -1.0 GCpn Leeward 29.8 psf Design Pressure(Windward=q x 0.6 x GCpn) -19.9 psf Design Pressure(Leeward=q x 0.6 x GCpn) C&C (Fig.30.7-1)(Table 30.7-2) CASE A(Windward Parapet1 CASE B(Leeward Parapet) Interior Zone4+ 39.2 Interior Zone2--65.8 Interior Zone4+ 39.2 Interior Zoned--49.3 End Zone5+ 39.2 End Zone3--99.1 End Zone5+ 39.2 End Zones--52.5 Design psf Interior 63.0 Interior 53.1 (=0.6•NET Pressure) End 83.0 End 55.0 Calculate Vertical Loads (..--VN t 0`k LL Roof 20 psf Reducible?Yes LJ SL(Flat Roof) 0 psf (See Additional Calculation Sheet) / �V DL Roof Deck 2 psf (i Bar Joists 3 psf V Insulation 2 psf Covering 2 psf Ceiling/Pipe/Duct 6 psf Total 15 psf Controlling D+L 35 psf Z s CLARK, LEER, LA THAM JOB 1405-137 Dollar Tree Atlantic Beach,FL & ASSOCIATES, INC. SHEET NO. 2 OF 1.6'17 ENGINEER • ARCHITECT CALCULATED BY DAB DATE 11/12/2014 3901 Springhill Ave CHECKED BY DATE Mobile,Alabama 36609 SCALE N.T.S (251)344-7073 FAX(251)343-9179 Calculate Lateral Loads WIND NARROW DIRECTION: (Note:Assume bottom 1/2 of wall pressure goes to ground) Width 88 ft Area Pressure Shear Force(Vl 2 x"a"Distance 14.4 ft Wall End Zone 245 sf 20.7 psf(Zone A) 5,078 lbs Avg Ht(h)to Diaphragm 17 ft Wall Interior Zone 503 sf 13.8 psf(Zone C) 6,933 lbs Windward Parapet Ht(avg) 2 ft Basic Parapet 176 sf 29.8 psf windward parapet 5,243 lbs Addl Parapet Area(Arch etc) 130 sf Additional Parapet 130 sf 29.8 psf windward parapet 3,872 lbs Leeward Parapet Ht(avg) 0 ft Basic Parapet 0 sf -19.9 psf leeward parapet - lbs Addl Parapet Area(Arch etc) 0 ft Additional Parapet 0 sf -19.9 psf leeward parapet - lbs (4)Small Towers N/A 0 lbs Large Tower Wide Direction N/A 0 lbs Total V 21,126 lbs Total Area 1678 sf 9.6 psf min(0.6 x 16) 16,108 Minimum lbs WIND WIDE DIRECTION: (Note:Assume bottom 1/2 of wall pressure goes to ground) Width 113 ft Area Pressure Shear Force(V 2 x"a"Distance 14.4 ft Wall End Zone 259 sf 20.7 psf(Zone A) 5,377 lbs Avg Ht(h)to Diaphragm 18 ft Wall Interior Zone 758 sf 13.8 psi(Zone C) 10,440 lbs Windward Parapet Ht(avg) 3 ft Basic Parapet 339 sf 29.8 psf windward parapet 10,098 lbs Addl Parapet Area(Arch etc) 0 sf Additional Parapet 0 sf 29.8 psf windward parapet - lbs Leeward Parapet Ht(avg) 3 ft Basic Parapet 339 sf -19.9 psf leeward parapet 6,732 lbs Addl Parapet Area(Arch etc) 0 st Additional Parapet 0 sf -19.9 psf leeward parapet - lbs (4)Small Towers N/A 0 lbs Large Tower Narrow Direction N/A 0 lbs Total V 32,647 lbs Total Area 2319 sf 9.6 psf min(0.6 x 16) 22,261 Minimum lbs SEISMIC(ALL DIRECTIONS): (Note:See additional calculation sheet) Ss 0.15 S1 0.06 Site Class D (Assumed) Cs 0.037 Base Shear Seismic Weight Component Length(ft2 Width/Trib Ht(fu PSF Total(Ibs2 Roof 113 88 15 149,160 Rear Wall 88 11 12 11,616 Rt Side Wall 113 11.5 12 15,594 Left Side Wall 113 11.5 12 15,594 Front Wall CMU 0 0 46 - Front Wall Studs 88 9 12 9,504 (1)Addl Parapets 130 sf area - 12 1,560 (4)Towers Walls 0 3.5 12 - (1)Front Tower Walls 0 5.5 12 - (4)Tower Roofs 0 16 22 - (1)Front Tower Roof 0 30 22 - 1 RTU's 10,000 Total W 213,028 Total V 7,882 lbs(Cs x W) I CLARK, LEER, LA THAM JOB 1405-137 Dollar Tree Atlantic Beach.FL & ASSOCIATES, INC. SHEET NO. 3 OF x.61 ENGINEER - ARCHITECT CALCULATED BY DAB DATE 11/12/2014 3901 Springhill Ave CHECKED BY DATE Mobile,Alabama 36609 SCALE N.T.S (251)344-7073 FAX(251)343-9179 DESIGN X-BRACING Controlling V from Wide Direction 32,647 lbs Controlling V from Narrow Direction 21,126 lbs V= 8,162 lbs 4-- Front Wall X-Bracing TS 5x5x1.4 16,323 lbs Total Shear 185 plf 2 Number of X-Braces =19.7 ft 8,162 lbs(V)Shear per X-Brace 16.7 ft(H)Height of Column H=16.7 ft 10.5 ft(W)Width of braced bay 19.7 It(L)Length of X-brace 15,313 lbs(P)force in diagonal member(L/W) 12,981 lbs(U)uplift due to lateral load(PHIL) 8,450 lbs(U)for 0.75W1+0.75W2 Load Case(N/A) Check Diagonal Member for Axial * W=10.5 ft 20 ft(KL) (Note:Braced in one direction) I 41,800 Pn/i? AISC Table 4-4 OK U=12981 lbs U=12981 lbs Check Corner Column 5 ft Tributary distance#1 16 ft Tributary distance#2 -24.9 psf Uplift pressure(MWFRS Zone E) Note.Assume all End Zone Pressure 80 sq ft tributary area 1 Reduction factor allowed(IBC 1607.11.2,FBC 1607.11.2) 15 psf Dead Load 20 psf Live Load 20 psf reduced live load 2500 psf Allowable Bearing Pressure(From Geotech Report) 16.7 ft Height of Column Check for Bearing Check for Uplift 1500 lbs Column/Beam weight 4 ft Footing Dimension#1 35 psf DL+LLr 4 ft Footing Dimension#2 2800 lbs DL+LLr 2 ft Footing Thickness 0 lbs DL+LL Tower Corner(N/A) Weight 4800 lbs 4800 lbs Weight of footing 4 in Slab Thickness 9100 lbs Total DL+LL 5 ft Slab resisting uplift perpendicular to wall 10 ft Slab resisting parallel to wall 1200 lbs DL Weight 2500 lbs 12,981 lbs WL from X-Brace 2 ft Grade Beam Width 0 lbs WL from Tower Overturning 2 ft Grade Beam Depth 18981 lbs Total DL+WL (Controls) 10 ft Length of Grade beam resisting uplift Weight 6000 lbs 18981 lbs Total Weight 12 psf Weight of wall 16 sf Area of Footing 18 ft Height of wall resisting uplift 1186 psf Bearin. Pressure 15 ft Length of wall resisting uplift OK Weight 3240 lbs Weight of Column/Beam Weight 1500 lbs Check Column TS 6x6x1'4 Type of Column 0 sf Soil above footing 1.6ft deep 16.7 ft KL 100 pcf Soil 86400 Pn/t? AISC Table 4-4 Weight 0 lbs OK Total 18040 lbs -15.9 psf Net Uplift(0.6 DL+WL) Check Studs at X-Brace -1274 lbs uplift 16.7 ft height of stud -8450 lbs Reaction from X-Brace 16 in stud spacing 0 lbs Reaction from Tower Overturning 6 in depth of studs -29.4 psf Wind Load(C&C End Zone 5) Total Uplift 9724 lbs 6x1-5/8x16 ga Type of Stud OK 16405 inlb Bending Moment(12WL^2/8) 30733 inlb Allowable Bending Moment from Mfg Data 2734 lbs Tension in Stud Flange 520 lbs Allowable Shear for#12 Tek Screw from Mfg Data 6 #of screws needed on each side of splice (M/d) CLARK, LEER, LA TTIAA( JOB 1405-137 Dollar Tree Atlantic Beach.FL & ASSOCIATES, INC. SHEET NO. 4 OF ,1Q17 ENGINEER • ARCHITECT CALCULATED BY DAB DATE 11/12/2014 3901 Springhill Ave CHECKED BY DATE Mobile,Alabama 36609 SCALE N.T.S (251)344-7073 FAX(251)343-9179 DESIGN X-BRACING Controlling V from Wide Direction 32,647 lbs Controlling V from Narrow Direction 21,126 lbs V= 10,563 lbs Side Wall X-Bracing TS 5x5x1/4 10,563 lbs Total Shear 120 plf 1 Number of X-Braces L=21.9 ft 10,563 lbs(V)Shear per X-Brace 16 ft(H)Height of Column H=16 ft 15 ft(W)Width of braced bay 21.9 It(L)Length of X-brace 15,422 lbs(P)force in diagonal member(LAW) 11,267 lbs(U)uplift due to lateral load(PHIL) 8,450 lbs(U)for 0.75W1+0.75W2 Load Case(N/A) Check Diagonal Member for Axial ♦ W=15 ft 22 ft(KL) (Note'Braced in one direction) 34,600 Pn/i? AISC Table 4-4 OK U=11267 lbs U=11267 lbs Check Non-Corner Column 30.5 ft Tributary distance#1 14 ft Tributary distance#2 -24.9 psf Uplift pressure(MWFRS Zone E) Note:Assume all End Zone Pressure 427 sq ft tributary area 0.773 Reduction factor allowed(IBC 1607.11.2,FBC 1607.11.2) 15 psf Dead Load 20 psf Live Load 15.46 psf reduced live load 2500 psf Allowable Bearing Pressure(From Geotech Report) 16 7 ft Height of Column Check for Bearing Check for Uplift 1500 lbs Column/Beam weight 4 ft Footing Dimension#1 30.46 psf DL+LLr 4 ft Footing Dimension#2 13006.42 lbs DL+LLr 2 ft Footing Thickness 0 lbs DL+LL Tower Corner(N/A) Weight 4800 lbs 4800 lbs Weight of footing 4 in Slab Thickness 19306 lbs Total DL+LL 5 ft Slab resisting uplift perpendicular to wall 17 ft Slab resisting parallel to wall 6405 lbs DL Weight 4250 lbs 11,267 lbs WL from X-Brace 2 ft Grade Beam Width 0 lbs WL from Tower Overturning 2 ft Grade Beam Depth 22472 lbs Total DL+WL (Controls) 16 ft Length of Grade beam resisting uplift Weight 9600 lbs 22472 lbs Total Weight 12 psf Weight of wall 16 sf Area of Footing 18 ft Height of wall resisting uplift 1405 psf Bearin. Pressure 20 ft Length of wall resisting uplift OK Weight 4320 lbs Weight of Column/Beam Weight 1500 lbs Check Column TS 6x6x1/4 Type of Column 0 sf Soil above footing 1.6ft deep 16.7 ft KL 100 pcf Soil 86400 Pn/t? AISC Table 4-4 Weight 0 lbs OK Total 24470 lbs -15.9 psf Net Uplift(0.6 DL+WL) Check Studs at X-Brace -6799 lbs uplift 16.7 ft height of stud -8450 lbs Reaction from X-Brace 16 in stud spacing 0 lbs Reaction from Tower Overturning 6 in depth of studs -29.4 psf Wind Load(C&C End Zone 5) Total Uplift 15249 lbs 6x1-518x16 ga Type of Stud OK 16405 inlb Bending Moment(12WL^2/8) 30733 inlb Allowable Bending Moment from Mfg Data OK 2734 lbs Tension in Stud Flange 520 lbs Allowable Shear for#12 Tek Screw from Mfg Data 6 #of screws needed on each side of splice (M/d) CLARK, LEER, LA TRAM JOB 1405-137 Dollar Tree Atlantic Beach,FL 8c ASSOCIATES, INC. SHEET NO. 5 OF y6 I ENGINEER - ARCHITECT CALCULATED BY DAB DATE 11/12/2014 3901 Springhill Ave CHECKED BY DATE Mobile,Alabama 36609 SCALE N.T.S (251)344-7073 FAX(251)343-9179 DESIGN X-BRACING Controlling V from Wide Direction 32,647 lbs Controlling V from Narrow Direction 21,126 lbs V= 16.323 lbs 4— Rear Wall X-Bracing TS 5x5x1/4 16,323 lbs Total Shear 185 plf 1 Number of X-Braces =21.9 ft 16,323 lbs(V)Shear per X-Brace 16 ft(H)Height of Column H=16 ft 15 ft(W)Width of braced bay 21.9 It(L)Length of X-brace 23,832 lbs(P)force in diagonal member(L/W) 17,412 lbs(U)uplift due to lateral load(PHIL) 8,450 lbs(U)for 0.75W1+0.75W2 Load Case(N/A) Check Diagonal Member for Axial ♦ W=15 ft 22 ft(KL) (Note:Braced in one direction) I 34,600 Pnl(? AISC Table 4-4 [ OK U=17412 lbs U=17412 lbs Check Non-Corner Column 15 ft Tributary distance#1 10 ft Tributary distance#2 -24.9 psf Uplift pressure(MWFRS Zone E) Note:Assume all End Zone Pressure 150 sq ft tributary area 1 Reduction factor allowed(IBC 1607.11.2,FBC 1607.11.2) 15 psf Dead Load 20 psf Live Load 20 psf reduced live load 2500 psf Allowable Bearing Pressure(From Geotech Report) 16 7 ft Height of Column Check for Bearing Check for Uplift 1500 lbs Column/Beam weight 4 ft Footing Dimension#1 35 psf DL+LLr 4 ft Footing Dimension#2 5250 lbs DL+LLr 2 ft Footing Thickness 0 lbs DL+LL Tower Corner(N/A) Weight 4800 lbs 4800 lbs Weight of footing 4 in Slab Thickness 11550 lbs Total DL+LL 5 ft Slab resisting uplift perpendicular to wall 15 ft Slab resisting parallel to wall 2250 lbs DL Weight 3750 lbs 17,412 lbs WL from X-Brace 2 ft Grade Beam Width 0 Ibs WL from Tower Overturning 2 ft Grade Beam Depth 24462 lbs Total DL+WL (Controls) 14 ft Length of Grade beam resisting uplift Weight 8400 lbs 24462 lbs Total Weight 12 psf Weight of wall 16 sf Area of Footing 18 ft Height of wall resisting uplift 1529 .sf Bearin. Pressure 15 ft Length of wall resisting uplift OK Weight 3240 lbs Weight of Column/Beam Weight 1500 lbs Check Column TS 6x6x1/4 Type of Column 0 sf Soil above footing 1.6ft deep 16.7 ft KL 100 pcf Soil 86400 Pnl(? AISC Table 4-4 Weight 0 lbs OK Total 21690 lbs -15.9 psf Net Uplift(0.6 DL+WL) Check Studs at X-Brace -2388 lbs uplift 16.7 ft height of stud -8450 lbs Reaction from X-Brace 16 in stud spacing 0 lbs Reaction from Tower Overturning 6 in depth of studs -29.4 psf Wind Load(C&C End Zone 5) Total Uplift 10839 lbs 6x1-518x16 ga Type of Stud OK 16405 inlb Bending Moment(12WL^2/8) 30733 inlb Allowable Bending Moment from Mfg Data OK 2734 lbs Tension in Stud Flange 520 lbs Allowable Shear for#12 Tek Screw from Mfg Data 6 #of screws needed on each side of splice (M/d) CLARK, LEER, LATHAM JOB 1405-137 Dollar Tree Atlantic Beach,FL 8c ASSOCIATES, INC. SHEET NO. 6 OF A-617 ENGINEER • ARCHITECT CALCULATED BY DAB DATE 11/12/2014 3901 Springhill Ave CHECKED BY DATE Mobile,Alabama 36609 SCALE N.T.S (251)344-7073 FAX(251)343-9179 DESIGN COLUMNS Interior Columns 30.5 ft Tributary distance#1 30 ft Tributary distance#2 -17.3 psf Uplift pressure(MWFRS Zone G) 915 sq ft tributary area 0.6 Reduction factor allowed(IBC 1607.11.2,FBC 1607.11.2) 15 psf Dead Load 20 psf Live Load 12 psf reduced live load 2500 psf Allowable Bearing Pressure(From Geotech Report) 18 ft Height of Column Check for Bearing Check for Uplift 500 lbs Column weight 4 ft Footing Dimension#1 27 psf DL+LLr 4 ft Footing Dimension#2 24705 lbs DL+LLr 1 ft Footing Thickness(below slab) 2400 lbs Weight of footing Weight 2400 lbs 4 in Slab Thickness 27605 lbs Total Weight 9 ft Slab resisting uplift in each direction 16 sf Area of Footing 324 sf Area of slab 1725 psf Bearin. Pressure Weight 16200 lbs OK Column&Beams 500 lbs Total 19100 lbs Check Column TS 5x5x1i4 Type of Column -8.3 psf Net Uplift(0.6 DL+WL) 18 ft KL Total Uplift 7629 lbs 51000 Pn/i? AISC Table 4-4 OK OK CLARK, GEER, LA THA M JOB 1405-137 Dollar Tree Atlantic Beach,FL & ASSOCIATES, INC. SHEET NO. 7 OF 1.9'/7 ENGINEER - ARCHITECT CALCULATED BY DAB DATE 11/12/2014 3901 Springhill Ave CHECKED BY DATE Mobile,Alabama 36609 SCALE N.T.S (251)344-7073 FAX(251)343-9179 DESIGN PERIMETER COLUMNS Check Rear Column (Footing 5) 22 ft Tributary distance#1 10 ft Tributary distance#2 -24.9 psf Uplift pressure(MWFRS Zone E) Note:Assume all End Zone Pressure 220 sq ft tributary area 0.98 Reduction factor allowed(IBC 1607.11.2,FBC 1607.11.2) 15 psf Dead Load 20 psf Live Load 19.6 psf reduced live load 2500 psf Allowable Bearing Pressure(From Geotech Report) 16 ft Height of Column Check for Uplift 4 ft Footing Dimension#1 Check for Bearing 4 ft Footing Dimension#2 1100 lbs Column&Beam weight 2 ft Footing Thickness 34.6 psf DL+LLr Weight 4800 lbs 7612 lbs DL+LLr 4 in Slab Thickness 4800 lbs Weight of footing 7 ft Slab resisting uplift parallel to wall 5 ft slab resisting uplift perpendicular to wall 13512 lbs Total Weight 35 sf Area of slab 16 sf Area of Footing Weight 1750 lbs 845 .sf Bearin. Pressure 2 ft Grade Beam Width OK 2 ft Grade Beam Depth Total 6550 lbs 10 ft Length of Grade beam resisting uplift Check Column Weight 6000 lbs TS 6x6x114 Type of Column 12 psf Weight of wall 16 ft KL 16 ft Height of wall resisting uplift 91600 Pn/t? RISC Table 4-4 14 ft Length of wall resisting uplift OK Weight 2688 lbs Weight of Column&Beam 1100 lbs Total 22888 lbs -15.9 psf Net Uplift(0.6 DL+WL) Total Uplift 3503 lbs OK Check Side Wall Column 31 ft Tributary distance#1 15 ft Tributary distance#2 -24.9 psf Uplift pressure(MWFRS Zone E) Note:Assume all End Zone Pressure 465 sq ft tributary area 0.735 Reduction factor allowed(IBC 1607.11.2,FBC 1607.11.2) 15 psf Dead Load 20 psf Live Load 14.7 psf reduced live load 2500 psf Allowable Bearing Pressure(From Geotech Report) 16 ft Height of Column Check for Uplift 4 ft Footing Dimension#1 Check for Bearing 4 ft Footing Dimension#2 1100 lbs Column weight 2 ft Footing Thickness 29.7 psf DL+LLr Weight 4800 lbs 13810.5 lbs DL+LLr 4 in Slab Thickness 4800 lbs Weight of footing 7 ft Slab resisting uplift parallel to wall 5 ft slab resisting uplift perpendicular to wall 19710.5 lbs Total Weight 35 sf Area of slab 16 sf Area of Footing Weight 1750 lbs 1232 .sf Bearin. Pressure 2 ft Grade Beam Width OK 2 ft Grade Beam Depth Total 6550 lbs 10 ft Length of Grade beam resisting uplift Check Column Weight 6000 lbs TS 6x6x1/4 Type of Column 12 psf Weight of wall 16 ft KL 20 ft Height of wall resisting uplift 91600 Pn/t? AISC Table 4-4 10 ft Length of wall resisting uplift OK Weight 2400 lbs Weight of Column&Beam 1100 lbs Total 22600 lbs -15.9 psf Net Uplift(0.6 DL+WL) Total Uplift 7404 lbs OK CLARK, GEER, LATHAM JOB 1405-137 Dollar Tree Atlantic Beach,FL & ASSOCIATES, INC. SHEET NO. 8 OF 18'0 ENGINEER • ARCHITECT CALCULATED BY DAB DATE 11/12/2014 3901 Springhill Ave CHECKED BY DATE Mobile,Alabama 36609 SCALE N.T.S (251)344-7073 FAX(251)343-9179 DESIGN STOREFRONT FACADE (Front of Buildingl Check Column Note:See additional printout from Structural Modeling Software 24 ft Tributary distance#1 15 ft Tributary distance#2 -24.9 psf Uplift pressure(MWFRS Zone E) Note:Assume all End Zone Pressure 360 sq ft tributary area 0.84 Reduction factor allowed(IBC 1607.11.2,FBC 1607.11.2) 15 psf Dead Load 20 psf Live Load 16.8 psf reduced live load 2500 psf Allowable Bearing Pressure(From Geotech Report) 17 ft Height of Column Check for Uplift Check for Bearing 4.3 ft Footing Dimension#1 1800 lbs Column&Beam weight 5.5 ft Footing Dimension#2 31.8 psf DL+LLr 2 ft Footing Thickness 11448 lbs DL+LLr Weight 7095 lbs 7095 lbs Weight of footing 4 in Slab Thickness 10 ft Slab resisting uplift parallel to wall 20343 lbs Total Weight 6 ft slab resisting uplift perpendicular to wall 23.65 sf Area of Footing 60 sf Area of slab 860 •-f Bearin• Pressure Weight 3000 lbs OK 2 ft Grade Beam Width Check for Axial 2 ft Grade Beam Depth Total 10095 lbs TS 10x10x114 Type of Column 8 ft Length of Grade beam resisting uplift 10 ft Kly Weight 4800 lbs 18 ft KLx 12 psf Weight of wall 202000 Pn/Q AISC Table 4-4 10 ft Height of wall resisting uplift OK 10 ft Length of wall resisting uplift Check for Bending Weight 1200 lbs 42200 lbft Total Bending Moment(See Analysis Printout) Weight of Column&Beam 1800 lbs 64400 lbft Mn/Q AISC Table 3-13 Total 27990 lbs OK -15.9 psf Net Uplift(0.6 DL+WL) Total Uplift 5732 lbs OK Check Beams with Roof Load Front Wall Center Scan(Vertical Loads Beam W18x40 Front Wall Center Span(Lateral Loadst 33 ft Length lx 612 5 ft Length (Braced by roof) 5 ft Lateral Bracing Sx 68.4 -22.0 psf Wind Load(C&C Zone 4) 15 ft Roof Tributary ly 19.1 9 ft Tributary 50 plf Self Weight Sy 6.35 198 plf Wind Load 15 psf DL Roof fly 50 618 lbft Total Bending Moment(WLA2/8) 495 sf Tributary Area 1168 psi fb=M/Sy 0.705 Reduction factor allowed(IBC 1607.11.2,FBC 1607.11.2) 33000 lbft Mn/f) Fb=0.66fy 20 psf Live Load OK 14.1 psf reduced live load 0.004 in Delta Max(x0.7 FBC Table 1604.3 note f) 29.1 psf DL+LLr 17066 Lhc 437 plf Roof Load(DL+LLr) OK 84 plf Wall Load 3264 lbs Max Reaction 571 plf Total Vertical Load 77659 Ibft Total Bending Moment(WLA2/8) 110500 Ibft MN() AISC Table 3-10 OK 0.86 in Delta Max 462 Ux OK 9413 lbs Max Reaction -24.9 psf Uplift Load(MWFRS Zone E) -374 plf Uplift 89 pfl 0.6 x DL(Roof+Self+Wall) -284 plf Net Uplift 10K,GRAVITY LOADS CONTROL I CLARK, GEER, LA THAM JOB 1405-137 Dollar Tree Atlantic Beach,FL & ASSOCIATES, INC. SHEET NO. 9 OF }ell ENGINEER • ARCHITECT CALCULATED BY DAB DATE 11/12/2014 3901 Springhill Ave CHECKED BY DATE Mobile,Alabama 36609 SCALE N.T.S (251)344-7073 FAX(251)343-9179 Check Beams with Roof Load Front Wall 16'Span(Vertical Loads) Beam W16x26 Front Wall 26'Span(Lateral Loads) 16 ft Length lx 301 5 ft Length (Braced by roof) 5 ft Lateral Bracing Sx 38.4 -22.0 psf Wind Load(C&C Zone 4) 15 ft Roof Tributary ly 9.59 6 ft Tributary 26 plf Self Weight Sy 3.49 132 plf Wind Load 15 psf DL Roof fy 50 412 Ibft Total Bending Moment(WL"2/8) 240 sf Tributary Area 1417 psi fb=M/Sy 0.96 Reduction factor allowed(IBC 1607.11.2,FBC 1607.11.2) 33000 lbft Mn/fl Fb=0.66fy 20 psf Live Load OK 19.2 psf reduced live load 0.005 in Delta Max(x0.7 FBC Table 1604.3 note f) 34.2 psf DL+LLr 12853 Ux 513 pIf Roof Load(DL+LLr) OK 50 plf Wall Load 1055 lbs Max Reaction 589 Of Total Vertical Load 18848 Ibft Total Bending Moment(WL"2/8) 110500 Ibft Mn/fl AISC Table 3-10 OK 0.10 in Delta Max 1930 Ux OK 4712 lbs Max Reaction -24.9 psf Uplift Load(MWFRS Zone E) -374 plf Uplift 55 p11 0.6 x DL(Roof+Self+Wall) -319 plf Net Uplift 10K,GRAVITY LOADS CONTROL I Check Beams with Roof Load Rear Wall 31'Span(Vertical Loads) Beam W16x26 Rear Wall 30'Span(Lateral Loads) 31 ft Length Ix 301 5 ft Length (Braced by roof) 5 ft Lateral Bracing Sx 38.4 -22.0 psf Wind Load(C&C Zone 4) 10 ft Roof Tributary ly 9.59 6 ft Tributary 26 Of Self Weight Sy 3.49 132 Of Wind Load 15 psf DL Roof fy 50 412 lbft Total Bending Moment(WL"2/8) 310 sf Tributary Area 1417 psi fb=M/Sy 0.89 Reduction factor allowed(IBC 1607.11.2,FBC 1607.11.2) 33000 lbft Mn/fl Fb=0.66fy 20 psf Live Load OK 17.8 psf reduced live load 0.005 in Delta Max(x0.7 FBC Table 1604.3 note f) 32.8 psf DL+LLr 12853 Ux 328 Of Roof Load(DL+LLr) OK 50 plf Wall Load 2044 lbs Max Reaction 404 plf Total Vertical Load 48531 lbft Total Bending Moment(WLA2/8) 110500 lbft Mn/fl AISC Table 3-10 OK 0.96 in Delta Max 387 Ux OK 8262 lbs Max Reaction -24.9 psf Uplift Load(MWFRS Zone E) -249 plf Uplift 55 pfl 0.6 x DL(Roof+Self+Wall) -195 Of Net Uplift IOK,GRAVITY LOADS CONTROL Note: All other W16x26 are OK by Observation CLARK, CEER, LA THAAl JOB 1405-137 Dollar Tree Atlantic Beach,FL &' ASSOCIATES, INC. SHEET NO. 10 OF y617 ENGINEER • ARCHITECT CALCULATED BY DAB DATE 11/12/2014 3901 Springhill Ave CHECKED BY DATE Mobile,Alabama 36609 SCALE N.T.S (251)344-7073 FAX(251)343-9179 • Check Beams without Roof Load Note.Strong Axis Horizontal 23'High Beam at Front(Vertical Loads) Beam 10x10x1/4 23'High Beam at Front(Lateral Loads) 33 ft Length lx 141 33 ft Length 33 ft Lateral Bracing Sx 28.3 63.0 psf Wind Load(Parapet interior zone) 0 ft Roof Tributary ly 141 4 ft Tributary 40 plf Self Weight Sy 28.3 252 plf Wind Load 15 psf DL Roof fy 46 34305 lbft Total Bending Moment(WP2/8) 0 sf Tributary Area 1 Reduction factor allowed(IBC 1607.11.2,FBC 1607.11.2) 54100 lbft Mn/(? Table 3-12 20 psf Live Load OK 20.0 psf reduced live load 1.151 in Delta Max(x0.7 FBC Table 1604.3 note f) 35.0 psf DL+LLr 344 Ux 0 plf Roof Load(DL+LLr) OK 0 plf Wall Load 4158 lbs Max Reaction 40 plf Total Vertical Load 5445 lbft Total Bending Moment(WL^2/8) 108000 Ibft Mn/O AISC Table 3-10 OK 0.26 in Delta Max 1517 Ux OK 660 lbs Max Reaction CLARK, GE ER, LA THAM JOB 1405-137 Dollar Tree Atlantic Beach,FL & ASSOCIATES, INC. SHEET NO. 11 OF ).g17 ENGINEER - ARCHITECT CALCULATED BY DAB DATE 11/12/2014 3901 Springhill Ave CHECKED BY DATE Mobile,Alabama 36609 SCALE N.T.S (251)344-7073 FAX(251)343-9179 DESIGN STOREFRONT HEADER BEAMS Check Beams without Roof Load 10'high Front Side(Vertical Loads) Beam 10x10x1/4 10'High Front Side(Lateral Loads) 32 ft Length lx 141 32 ft Length 32 ft Lateral Bracing Sx 28.3 -22.0 psf Wind Load(C&C Zone 4) 0 ft Roof Tributary ly 141 6 ft Tributary 30 plf Self Weight Sy 28.3 132 plf Wind Load 15 psf DL Roof fy 46 25500 lbft Total Bending Moment(WL^2/8) 0 sf Tributary Area 1.00 Reduction factor allowed(IBC 1607.11.2,FBC 1607.11.2) 64400 lbft Mn/() AISC Table 3-12 20 psf Live Load OK 20.0 psf reduced live load 0.53 in Delta Max(x0.7 FBC Table 1604.3 note f) 35.0 psf DL+LLr 721 Ux 0 plf Roof Load(DL+LLr) OK 60 plf Wall Load 2110 lbs Max Reaction 90 plf Total Vertical Load 11520 lbft Total Bending Moment(WL^2/8) 31800 lbft Mn/(? AISC Table 3-12 OK 0.52 in Delta Max 739 Ux OK j 1440 lbs Max Reaction Check Beams without Roof Load Right and Left Window Headers(Vertical Loads) Beam 8x6x12ga Right and Left Window Headers(Lateral Loads) 12 ft Length lx 44 9 12 ft Length 12 ft Lateral Bracing Sx 11.2 -22.0 psf Wind Load(Parapet interior zone) O ft Roof Tributary ly 23.8 8 ft Tributary 20 plf Self Weight Sy 7.9 176 plf Wind Load 15 psf DL Roof fy 50 3165 lbft Total Bending Moment(WL^2/8) O sf Tributary Area 4.8 fb ksi=M/S 1.00 Reduction factor allowed(IBC 1607.11.2,FBC 1607.11.2) 33 Fb ksi=0.66 x fy 20 psf Live Load OK 20.0 psf reduced live load 0.083 in Delta Max(x0.7 FBC Table 1604.3 note f) 35.0 psf DL+LLr 1731 Ux O plf Roof Load(DL+LLr) OK 168 plf Wall Load 1055 lbs Max Reaction 188 plf Total Vertical Load 3384 lbft Total Bending Moment(WL^2/8) 3.6 fb ksi=M/S 33 Fb ksi=0.66 x fy OK 0.07 in Delta Max 2138 Ux OK 1128 lbs Max Reaction I CLARK, LEER, LA THAM JOB 1405-137 Dollar Tree Atlantic Beach,FL & ASSOCIATES, INC. SHEET NO. 12 OF 16 r 7 ENGINEER • ARCHITECT CALCULATED BY DAB DATE 11/12/2014 3901 Springhill Ave CHECKED BY DATE Mobile,Alabama 36609 SCALE N.T.S (251)344-7073 FAX(251)343-9179 DESIGN ROOF FRAMING Bar Joists 31 Ft Span 31 ft Span 5 ft spacing 35 psf Controlling Load (DL+LLr) 175 plf Uniform Load 20 psf Live Load 100 pfl Live Load 20k3 Joist Series 212 plf Total Load(From SJI Publication) 138 plf Live Load(From SJI Publication) OK Check Deflection 0.25 Roof Slope in 12 7.8 in Height Difference Over Joist Span 110 in^4 Approx.Moment of Inertia(26.767 x W x L3 x 10-6) 1.1 in Deflection(Total Load) 3.9 in Deflection limit for ponding(1/2 of slope) OK 2713 lbs Max Reaction 20 Ft Span 20 ft Span 5 ft spacing 35 psf Controlling Load (DL+LLr) 175 plf Uniform Load 20 psf Live Load 100 pfl Live Load 14K1 Joist Series 284 plf Total Load(From SJI Publication) 197 plf Live Load(From SJI Publication) OK Check Deflection 0.25 Roof Slope in 12 5.0 in Height Difference Over Joist Span 42 in^4 Approx.Moment of Inertia(26.767 x W x L3 x 106) 0.5 in Deflection(Total Load) 2.5 in Deflection limit for ponding(1/2 of slope) OK 1750 lbs Max Reaction Girder Joist 5425 lbs Max Reaction 1000 lbs Allowance for Roof Top Equipment 6425 lbs Total Reaction 32G6N6 5K Girder Joist Designation Deck Net Uplift 1.5B 22 Ga Deck Type 5 fasteners per 36"panel 5 ft Span(Assume Single Span Condition) 0.0295 in Thickness 98 psf Total Load Limit(SJI Publication) 280 lbs Allowable uplift per#12 Tek Screw 81 psf Live Load Limit(SJI Publication) 3.0 sf Tributary Area per#12 Tek Screw Uplift 0.6*Deck,Insulation&Covering psf Net Uplift Uplift per screw -23.5 psf Interior(C&C Zone 1) 3.6 -19.9 -59.8 OK -39.5 psf Edge(C&C Zone 2) 3.6 -35.9 -107.6 OK -59.4 psf Corner(C&C Zone 3) 3.6 -55.8 -167.5 OK OK Deck Gravity 35 psf DL+LLr OK Deck Shear 185 plf Max Shear at Shear Walls Spacing Shear per Screw Allowable 5 fasteners per 36"panel 111 262 Allowable shear per#12 Tek Screw OK 8 in o/c spacing at sidelaps 124 143 Allowable shear per#10 sidelap Tek Screw OK • CLARK, GEER, LA THAM JOB 1405-137 Dollar Tree Atlantic Beach.FL & ASSOCIATES, INC. SHEET NO. 13 OF yer� ENGINEER - ARCHITECT CALCULATED BY DAB DATE 11/12/2014 3901 Springhill Ave CHECKED BY DATE Mobile,Alabama 36609 SCALE N.T.S (251)344-7073 FAX(251)343-9179 Check Light Gauge Framing Wall Studs Connection 6"x16gaCSJ Type of Stud Anchor Bolt into Concrete 16.7 ft height 32 in o/c spacing 16 in spacing 655 lbs Required -29.4 psf Wind(End C&C Zone 5) 5198 lbs Provided 39 plf W OK 16405 in lbs Max Moment(WL^2/8) Screw into Wide Flange Beam 327 lbs Max Reaction 16 in o/c spacing 30733 in lbs Allowable Moment(Manufacturers Data) 327 lbs Required OK 1 645 lbs Provided OK Parapet Studs at Large Facade Connection 8"x14gaCSJ Type of Stud 12 ga Clip w/(5)#12 Tek Screws Shear 5 ft cantilever height 24 in o/c spacing 16 in spacing 630 lbs Required 63.0 psf Wind(Windard Parapet Net Pressure) 3225 lbs Provided =645'5 84 plf W OK 12601 in lbs Max Moment(WL^2/2) 12 ga Clip w/(5)#12 Tek Screws Withdrawal 420 lbs Max Reaction 24 in o/c spacing 49776 in lbs Allowable Moment(Manufacturers Data) 630 lbs Required OK 2365 lbs Provided =47V5 OK CLARK, LEER, LA TRAM JOB 1405-137 Dollar Tree Atlantic Beach,FL & ASSOCIATES, INC. SHEET NO. 14 OF ) I7 ENGINEER • ARCHITECT CALCULATED BY DAB DATE 11/12/2014 3901 Springhill Ave CHECKED BY DATE Mobile,Alabama 36609 SCALE N.T.S (251)344-7073 FAX(251)343-9179 Framing at Short Parapet 4 ft Max Height 63.0 psf Wind(Interior Zone Parapet Net Pressure) Note:This detail only exists in interior zones 126 plt Max Reaction 6x6x1/4 Stub Column 8 ft Stub Column Spacing 1008 lbs Point Load at Top of Stub Column 4032 lbft Moment at Base of Stub Column(PxL) 25700 lbft Ma/D AISC Table 3-13 C6x8.2 Top Channel 4.35 inA3 Section Modulus 36 fy ksi 1008 lbft Max Moment(WLA2/8) 2781 fb=M/S 23760 Fb=.66fy OK Anchor Bong Interior C ' -'r ACI318 Appendix D s 1.6 x Max Uplift (Interior Column) hef(Effective Depth) 0.75 in d(Diameter 9 in S1=S2 Spacing it of Ancho' 's ,ef+S2) (Actual Area) I 1.25 Wc,N 0.6 WCp,N 35492 Ncbg ft 3000 psi 1296 inA2(Anco=(2hef+S1)x(2hef+S2) (Projected Area) 1 Anc/Anco 198" Wcp,N•Nnx0.7 (5K Front Column ACI318 Appendix D 9172 lbs 1.8 x Max Uplift 10 in hef(Effective Depth) 0.75 in d(Diameter 9 in S1=S2 Spacing 4#of Anchor Bolts 15 in(1.5 hef) 1521 inA2(Anc=(2hef+S1)x(2hef+S2) (Projected Area w/Edge) 1 `I'ed,N 1.25 WC,N 0.6 WCp,N 41569 lbs Nb ft 3000 psi 1521 inA2(Anco=(2hef+S1)x(2hef+S2) (Projected Area w/no Edge Restrictions) 1 Anc/Anco 21824 lbs ON=0.7•Wed,N•Wc,N•Wcp,N•Nb I OK I CLARK, LEER, LATI-IAM JOB 1405-137 Dollar Tree Atlantic Beach.FL 8c ASSOCIATES. INC. SHEET NO. 15 OF Vert 7 ENGINEER - ARCHITECT CALCULATED BY DAB DATE 11/12/2014 3901 Springhill Ave CHECKED BY DATE Mobile,Alabama 36609 SCALE N.T.S (251)344-7073 FAX(251)343-9179 Dumpster Enclosure Wall 7 ft Height of Wall 33.1 psf q 1.30 Cf 0.85 G 21.9 psf P=0.6 x q x G x Cf Design Wind Pressure (Eq 29.4-1) 538 Ibft/If Moment due to Wind on Wall(=WL^2/2) spacing b 24 in depth 7.625 in d 3.8 in As 0.31 in^2 rho 0.0034 Es 29000000 Em 1350000 n 21.5 rho'n 0.073 k 0.3160 0.8947 2/kj 7.07 block comp fm 1500 psi allowable stress in block 500 psi allowable stress in steel 24000 psi M 1075 Ib'ft fb 263 psi 53% OK fs 12243 psi 51% OK I CLARK, GEER, LATHAM JOB 1405-137 Dollar Tree Atlantic Beach, FL ?c ASSOCIATES, INC. SHEET NO. 16 OF 17 ENGINEER • ARCHITECT CALCULATED BY DAB DATE 11/12/2014 3901 Springhill Ave CHECKED BY DATE Mobile,Alabama 36609 SCALE N.T.S (251)344-7073 FAX(251)343-9179 CHECK HOLDDOWNS ON ROOF TOP UNIT(RTU#5 LIGHTEST UNIT) WIND LOADS: USE ASCE-7-10 CH.30 PER FLA BLDG CODE 2010 CARRIER 50HC-A06 MAKE AND MODEL OF ROOF TOP UNIT 775 WEIGHT(LBS) NOTE:WEIGHT FROM MECHANICAL PLANS 75 LENGTH (IN) 47 WIDTH (IN) 42 HEIGHT(IN) 12 CURB HEIGHT(IN) 130 VULT ULTIMATE WIND SPEED(MPH) FBC Figure 1609A,B,C ASCE Figure 26.5-1A,B,C 103 VASD NOMINAL WIND SPEED(MPH) C WIND EXPOSURE 0.94 Kz VELOCITY PRESSURE COEFFICIENT Table 30.3-1 1 Kzt TOPOGRAPHIC FACTOR Sect 26.8 0.85 Kd DIRECTIONALITY FACTOR Table 26.6-1 II CATEGORY BUILDING 34.6 qz(PSF)VELOCITY PRESSURE ASCE EQ 29.3-1 =0.00256*Kz*Kzt*Kd*V2 28.1 Af(SF) PROJECTED AREA OF WIDEST FACE INCLUDING CURB=LENGTH x(HEIGHT+CURB)/144 47 D(IN) LEAST HORIZONTAL DIMENSION 54 h (IN) HEIGHT INCLUDING CURB 0.60 LOAD FACTOR FOR ASD WIND LOAD COMBINATIONS 1.9 GCr ASCE 7 SECT 29.5.1 FACTOR FOR ROOFTOP STRUCTURES 1108 F (LBS)ASCE EQ. 29.5-2=0.6 x q x GCr x Af 27 h/2 (IN) HEIGHT OF FORCE= h/D/2 249 R(LBS) OVERTURNING REACTION FROM SUMMING OF MOMENTS(PER SIDE OF RTU) R= (-W X D/2+ F x h/2)/D 24.5 Ar(SF) HORIZONTAL PROJECTED AREA OF UNIT 1.5 GCr ASCE 7 SECT 29.5.1 0.60 LOAD FACTOR FOR ASD WIND LOAD COMBINATIONS 762 (LBS) UPLIFT FORCE ASCE EQ 29.5-3=0.6 x q x GCr x Ar 381 (LBS) UPLIFT FORCE (PER SIDE OF RTU) 630 (LBS) TOTAL UPLIFT PER SIDE DUE TO OVERTURNING AND UPLIFT= UPLIFT+ OVERTURNING 1/4"TEK SCREWS (CURB TO ANGLE) 661 (LBS)ALLOWABLE PULLOUT VALUE (USE MFG DATA) 13 NUMBER OF SCREWS PROVIDED PER LONG SIDE 8593 (LBS) UPLIFT RESISTANCE PER SIDE OF RTU PROVIDED BY SCREWS 3/8"BOLT (RTU TO CURB) 2640 (LBS)ALLOWABLE SHEAR VALUE (0.2 x Fu x Ab) 4 NUMBER OF BOLTS PROVIDED PER LONG SIDE 10560 (LBS) UPLIFT RESISTANCE PER SIDE OF RTU PROVIDED BY BOLTS 13.6 APPROX FACTOR OF SAFETY PROVIDED BY TIEDOWN SYSTEM (OK) CLARK, GEER, LA THAM JOB 1405-137 Dollar Tree Atlantic Beach, FL �c ASSOCIATES, INC. SHEET NO. 17 OF 17 ENGINEER • ARCHITECT CALCULATED BY DAB DATE 11/12/2014 3901 Springhill Ave CHECKED BY DATE Mobile, Alabama 36609 SCALE N.T.S (251)344-7073 FAX(251)343-9179 CHECK HOLDDOWNS ON ROOF TOP UNIT(RTU#1-3 LARGEST UNITS) WIND LOADS: USE ASCE-7-10 CH.30 PER FLA BLDG CODE 2010 CARRIER 50HC-D08 MAKE AND MODEL OF ROOF TOP UNIT 1050 WEIGHT(LBS) NOTE: WEIGHT FROM MECHANICAL PLANS 89 LENGTH(IN) 60 WIDTH (IN) 50 HEIGHT(IN) 12 CURB HEIGHT(IN) 130 VUL7 ULTIMATE WIND SPEED (MPH) FBC Figure 1609A,B,C ASCE Figure 26.5-1A,B,C 103 VASD NOMINAL WIND SPEED(MPH) C WIND EXPOSURE 0.94 Kz VELOCITY PRESSURE COEFFICIENT Table 30.3-1 1 Kzt TOPOGRAPHIC FACTOR Sect 26.8 0.85 Kd DIRECTIONALITY FACTOR Table 26.6-1 II CATEGORY BUILDING 34.6 qz(PSF)VELOCITY PRESSURE ASCE EQ 29.3-1 =0.00256*Kz*Kzt*Kd*V2 38.3 Af(SF) PROJECTED AREA OF WIDEST FACE INCLUDING CURB =LENGTH x(HEIGHT+CURB)/144 60 D(IN) LEAST HORIZONTAL DIMENSION 62 h(IN) HEIGHT INCLUDING CURB 0.60 LOAD FACTOR FOR ASD WIND LOAD COMBINATIONS 1.9 GCr ASCE 7 SECT 29.5.1 FACTOR FOR ROOFTOP STRUCTURES 1510 F(LBS)ASCE EQ. 29.5-2 =0.6 x q x GCr x Af 31 h/2(IN) HEIGHT OF FORCE =h/D/2 255 R(LBS) OVERTURNING REACTION FROM SUMMING OF MOMENTS (PER SIDE OF RTU) R= (-WXD/2 +Fxh/2)/D 37.1 Ar(SF) HORIZONTAL PROJECTED AREA OF UNIT 1.5 GCr ASCE 7 SECT 29.5.1 0.60 LOAD FACTOR FOR ASD WIND LOAD COMBINATIONS 1154 (LBS) UPLIFT FORCE ASCE EQ 29.5-3=0.6 x q x GCr x Ar 577 (LBS) UPLIFT FORCE (PER SIDE OF RTU) 832 (LBS)TOTAL UPLIFT PER SIDE DUE TO OVERTURNING AND UPLIFT= UPLIFT+OVERTURNING 1/4"TEK SCREWS (CURB TO ANGLE) 661 (LBS)ALLOWABLE PULLOUT VALUE (USE MFG DATA) 15 NUMBER OF SCREWS PROVIDED PER LONG SIDE 9915 (LBS) UPLIFT RESISTANCE PER SIDE OF RTU PROVIDED BY SCREWS 3/8"BOLT (RTU TO CURB) 2640 (LBS)ALLOWABLE SHEAR VALUE(0.2 x Fu x Ab) 4 NUMBER OF BOLTS PROVIDED PER LONG SIDE 10560 (LBS) UPLIFT RESISTANCE PER SIDE OF RTU PROVIDED BY BOLTS 11.9 APPROX FACTOR OF SAFETY PROVIDED BY TIEDOWN SYSTEM (OK) MUMS Design Maps Summary Report User-Specified Input Report Title Dollar Tree Atlantic Beach, FL Tue November 11, 2014 13:04:20 UTC Building Code Reference Document 2006/2009 International Building Code (which utilizes USGS hazard data available in 2002) Site Coordinates 30.34°N, 81.42°W Site Soil Classification Site Class D - "Stiff Soil" Occupancy Category I/II/III 11\ 2mi FORT,1GEORGE $, r, r.__Is000ink.,, ",;INLET '�, '\y Heckscf 1 Qom. J "Ali, l:� psi 1 / ! J AMA ;� " ' o oAtlantic Beach: IP • l jpilik ,j/1 l� ' rte- 'AtlanLc Blvd ,- - N O°R T N 1 a. 'j Jacksonville Beach A M E R I C A Z. Beach Blvd- 90 212 ...__- .-_.-i} n i w ,M mapq"est 1i o.,.,ie��>el Quet USGS-Provided Output Ss = 0.146 g SMS = 0.234 g Sos = 0.156 g S1 = 0.062 g SM1 = 0.148 g Sol = 0.099 g MCE Response Spectrum Design Response Spectrum 0.24 0.16 0.21 0.14 0.19 0.12 St 0.15 St 0.10 ill 0.12 t 0.08 I 0.09 0.06 0.06 0.04 0.03 0.02 0.00 0.00 0.00 0.20 0.40 0.60 0.90 1.00 1.20 1.40 1.60 1.90 2.00 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 Period, T(sec) • Period, T(sec) Although this information is a product of the U.S.Geological Survey,we provide no warranty,expressed or implied,as to the accuracy of the data contained therein.This tool is not a substitute for technical subject-matter knowledge. USGS Design Maps Detailed Report 2006/2009 International Building Code (30.34°N, 81.42°W) Site Class D — "Stiff Soil", Occupancy Category I/II/III Section 1613.5.1 — Mapped acceleration parameters Note: Maps in the 2006 and 2009 International Building Code are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 1613.5.3. From Figure 1613.5(1) (13 Ss = 0.146 g From Figure 1613.5(2) [2I S1 = 0.062 g Section 1613.5.2 — Site class definitions SITE SOIL Soil shear wave Standard penetration Soil undrained shear CLASS PROFILE velocity, vs, (ft/s) resistance, N strength, s , (psf) NAME A Hard rock vs > 5,000 N/A N/A B Rock 2,500 < vs <— 5,000 N/A N/A C Very dense 1,200 < vs 5 2,500 N > 50 >2,000 psf soil and soft rock D Stiff soil 600 <_ vs < 1,200 15 _< N <— 50 1,000 to 2,000 psf profile E Stiff soil vs < 600 N < 15 <1,000 psf profile E — Any profile with more than 10 ft of soil having the characteristics: 1. Plasticity index PI > 20, 2. Moisture content w ? 40%, and 3. Undrained shear strength s < 500 psf F — Any profile containing soils having one or more of the following characteristics: 1. Soils vulnerable to potential failure or collapse under seismic loading such as liquefiable soils, quick and highly sensitive clays, collapsible weakly cemented soils. 2. Peats and/or highly organic clays (H > 10 feet of peat and/or highly organic clay where H = thickness of soil) 3. Very high plasticity clays (H > 25 feet with plasticity index PI > 75) 4. Very thick soft/medium stiff clays (H > 120 feet) For SI: lft/s = 0.3048 m/s 11b/ft2 = 0.0479 kN/m2 Section 1613.5.3 - Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters TABLE 1613.5.3(1) VALUES OF SITE COEFFICIENT Fa Site Class Mapped Spectral Response Acceleration at Short Period Ss 0.25 S5 = 0.50 S5 = 0.75 SS = 1.00 SS ? 1.25 A 0.8 0.8 0.8 0.8 0.8 B 1.0 1.0 1.0 1.0 1.0 C 1.2 1.2 1.1 1.0 1.0 D 1.6 1.4 1.2 1.1 1.0 E 2.5 1.7 1.2 0.9 0.9 F See Section 11.4.7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of SS For Site Class = D and SS = 0.146 g, F, = 1.600 TABLE 1613.5.3(2) VALUES OF SITE COEFFICIENT FF Site Class Mapped Spectral Response Acceleration at 1-s Period S1 <_ 0.10 S1 = 0.20 S1 = 0.30 S1 = 0.40 S1 ? 0.50 A 0.8 0.8 0.8 0.8 0.8 B 1.0 1.0 1.0 1.0 1.0 C 1.7 1.6 1.5 1.4 1.3 D 2.4 2.0 1.8 1.6 1.5 E 3.5 3.2 2.8 2.4 2.4 F See Section 11.4.7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of S1 For Site Class = D and S1 = 0.062 g, F„ = 2.400 4 . In the equations below, the equation number corresponding to the 2006 edition is listed first, and that corresponding to the 2009 edition is listed second. Equation (16-37; 16-36): SMS = FaSs = 1.600 x 0.146 = 0.234 g Equation (16-38; 16-37): SM1 = F,S1 = 2.400 x 0.062 = 0.148 g Section 1613.5.4 — Design spectral response acceleration parameters Equation (16-39; 16-38): Sps = % SMS = 2/3 x 0.234 = 0.156 g i1 Equation (16-40; 16-39): S01 = 2/3 SM1 = 2/3 x 0.148 = 0.099 g Section 1613.5.6 — Determination of seismic design category TABLE 1613.5.6(1) SEISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD RESPONSE ACCELERATION OCCUPANCY CATEGORY VALUE OF SDs I or II III IV Sos < 0.167g A A A 0.167g <_ Sos < 0.33g B B C 0.33g 5 Sps < 0.50g C C D 0.50g <_ Sps D D D For Occupancy Category = I and Sos = 0.156 g, Seismic Design Category = A TABLE 1613.5.6(2) SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION OCCUPANCY CATEGORY VALUE OF SD1 I or II III IV SDI < 0.067g A A A 0.067g <_ SD1 < 0.133g B B C 0.133g _< Sol < 0.20g C C D 0.20g5Sol D D D For Occupancy Category = I and So, = 0.099 g, Seismic Design Category = B Note: When Si is greater than or equal to 0.75g, the Seismic Design Category is E for buildings in Occupancy Categories I, II, and III, and F for those in Occupancy Category IV, irrespective of the above. Seismic Design Category = "the more severe design category in accordance with Table 1613.5.6(1) or 1613.5.6(2)" = B Note: See Section 1613.5.6.1 for alternative approaches to calculating Seismic Design Category. References 1. Figure 1613.5(1): http://earthquake.usgs.gov/hazards/design maps/downloads/pdfs/IBC-2006- Fig u re 1613_5(01).pdf 2. Figure 1613.5(2): http://earthquake.usgs.gov/hazards/design maps/downloads/pdfs/IBC-2006- Figu re 1613_5(02).pdf STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS,K-SERIES Based on a 50 ksi Maximum Yield Strength-Loads Shown In Pounds Per Linear Foot(plf) JoIst 1813 1814 1815 18K6 181(7 18K9j18K10 2013 201(4 2015 20K61 20K7 2019 20110 22141 22K5'22K6 221(7 22K9122K10 22111 Designation_ Depth(In.) 18 18 18 18 18' 18 1 18 20 20 20 20 : 20 20 20 22 22 . 22 22 22 22 22 Approx.Wt. 6.4 7.2 7.7 8.4 8.9 10.1 11.6 6.5 7.2 7.7 8.4 8.9 10.1 11.6 7.3 I 7.7 j 8.5 9.0 10.2 11.7 11.9 (lbs./ft.) Span(ft) 1 I18 550 550 550 550 550 550 550 550 550 550 550 550 550 550 19 514 550 550 550 550 550 550 550 550 550 550 550 550 550 494 523 523 523 523 523 1 523 550 550 550 550 550 550 550 1 20 463 550 550 550 550 550 j 550 517 550 550 550 550 550 550 423 490 490 490 490 490 1 490 517 550 550 550 i 550 550 550 21 420 506 550 550 550 550 ' 550 468 550 550 550 560 550 550 550 I 550 550 550 550 550 550 364 426 460 460 460 460 460 453 520 520 520 , 520 520 520 550 ! 550 550 550 550 550 550 22 382 460 518 550 550 550 550 426 514 550 550 550 550 550 550 550 550 550 550 550 550 316 370 414 438 438 438 438 393 461 490 490 i 490 490 490 548 548 548 548 548 548 548 23 349 420 473 516 550 550 550 389 469 529 550 550 550 550 518 550 550 550 550 550 550 276 323 362 393 418 418 418 344 402 451 468 468 468 468 491 1 518 518 518 518 518 518 24 320 385 434 473 526 550 1 550 357 430 485 528 550 550 550 475 ' 536 ' 550 550 550 550 550 242 284 318 345 382 396 396 302 353 396 430 448 448 448 431 483 495 495 495 495 495 25 294 355 400 435 485 550 550 329 396 448 486 541 550 550 438 493 537 550 550 550 550 214 250 281 305 337 377 377 266 312 350 380 421 426 426 381 427 464 474 474 474 474 26 272 328 369 402 4-48 538 550 304 366 412 449 500 550 550 404 455 496 550 550 550 550 190 222 249 271 299 354 361 236 277 310 337 1 373 405 405 338 379 411 454 454 454 454 27 252 303 342 372 415 498 550 281 339 382 416 463 550 550 374 422 1 459 512 550 550 550 169 198 222 241 267 315 347 211 247 277 301 1 333 389 389 301 337 j 367 406 432 432 432 28 234 282 318 346 385 463 548 261 315 355 386 430 517 550 348 392 427 475 550 550 550 151 177 199 216 239 282 i 331 189 221 248 269 298 353 375 270 302 328 364 413 413 413 29 218 263 296 322 359 431 1 511 243 293 330 360 ; 401 482 550 324 365 1 398 443 532 550 550 136 159 179 194 215 254.4 298 170 199 223 242 i 268 317 359 242 272 : 295 327 387 399 399 30 203 245 276 301 335 402 ' 477 227 274 308 336 1 374 450 533 302 341 371 ,„413 497 550 550 123 1 144 161 175 194 229 269 179 201 218 242 286 336 219 245 286 295 349 385 385 31 1 22 258 281 313 376 446 212\ 256 289 314 350 421 499 283 319 347 387 465 550 550 111 130, 146 158 175 207 , 243 134/ 182 , 182 198 _ 219 259 304 198 222 j 241 267 316 369 369 32 178 218^; 242 264 294 353 418 199; 240 271 295 1 328 395 468 265 299 1 326 363 436 517 549 101 118 132 144 159 188 221 126 147 165 179 i 199 235 276 180 i 201 j 219 242 287 337 355 33 168 202 228 248 276 332 393 187 226 254 277 j 309 371 440 249 1 281 1 306 341 410 486 532 92 108 121- 131 145 171 i 201 114 134 150 163 181 214 251 164 1 183 199 221 261 ' 307 334 34 t 158 190 21441 233 260 312 370 176 212 23$ 261 290 349 414 i 265 288 ' 321 386 458 516 84 98 1101 120 132 156 184 105 122 137' 149 165 195 229 49 167 , 182 202 239 280 314 35 149 179 202` 22V 245 294 349 186 200 226 246 j 274 329 390 $21 248'; 272 303 364 432 494 77 90 101 110 121 143 168 96 112 126 137 1 151 179 210 37 153;'; 167 185 219 257 292 36 141 189 191 208 232 278 330 157 189 213 `28V 259 311 369 209 236 257'- 286 344 408 467 70 82 92 ;``:101?; 111 132 , 154 88 103 115 125 139 164 193 .26 141 153 169 201 236 269 37 ' 148 179 202 220 245 294 349 198 223 243' 271 325 386 442 81 95 106 115 128 151 178 116 130 141, 156 185 217 247 38 ' 141 170 1 191 208 232 279 331 187 211 230 256 308 366 419 + 74 87 98 ■ 106 118 139 164 107 119 130 144 170 200 228 39 133 161 181 198 220 285 314 78 200 218 243 292 347 397 69 81 90 98 109 ■ 129 151 48 110 1201 133 157 185 211 40 II 127 153 172 188 209 251 298 169 190 207 231 278 330 377 I 64 75 84 i 91 ! 1D1 119 140 -91 102 111 123 146 171 195 41 181 181 197 1 220 264 314 359 45 95 . 103 1 114 135 159 181 42 i 153 173 i 188 209 252 299 342 • 79 88 96 106 126 148 168 43 I '1 146 165 179 200 240• 285 326 I 73 i 82 1 89 99 i 117 138 157 139 1 157 171 191 229 272 311 ' 68 I 76 83 92 j 109 128 146 58 7 .. STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS,K-SERIES Based on a 50 ksi Maximum Yield Strenoth-Loads Shown In Pounds Per Linear Foot(�If) Joist 1 10K1 12K1 12K3 12K5 14K1 14K3 14K4 14K6 16K2 16K3 16K4 16K5 16K6 16K7 16K9 Designation _ De.th(in.) 10 12 12 12 14 14 14 14 16 16 16 16 16 16 16 Approx.Wt 5.0 5.0 5.7 7.1 5.2 6.0 6.7 7.7 5.5 6.3 7.0 7.5 8.1 8.6 10.0 (Ibs.lft.) - Spay .) (ft M 10 550 550 , . 11 550 542 12 550 550 550 550 455 550 550 550 13 479 550 550 550 363 510 510 510 14 412 500 550 550 550 550 550 550 289 425 463 463 550 550 550 550 15 358 434 543 550 511 550 550 550 234 344 428 434 475 507 507 507 16 313 380 476 550 448 550 550 550 550 550 550 550 550 550 550 192 282 351 396 390 467 467 467 550 550 550 550 550 550 550 17 277 336 420 550 395 495 550 550 512 550 550 550 550 550 550 159 234 291 366 324 404 443 443 488 526 526 526 526 526 526 18 246 299 374 507 352 441 530 550 456 508 550 550 550 550 550 134 197 245 317 272 339 397 408 409 456 490 490 490 490 490 19 221 268 335 454 315 395 475 550 408 455 547 550 550 550 550 113 167 207 269 287 336 383 347 386 452 455 455 455 455 20 199 241 302 409 •84 356 428 525 368 410 493 550 550 550 550 97 142 177 230 197 246 287 347 297 330 386 426 426 426 426 21 218 273 370 322 388 475 333 371 447 503 548 550 550 123 153 198 170 212 248 299 255 285 333 373 405 406 406 22 199 I 249 337 234 293 353 432 303 337 406 458 498 550 550 106 . 132 172 147 184 215 259 222 247 289 323 351 385 385 23 181 227 308 214 268 322 395 277 308 371 418 455 507 550 93 116 150 128 160 188 226 194 216 252 282 307 339 363 24 168 208 282 196 245 295 362 254 283 340 384 418 465 550 ' 81 , 101 132 113 141 165 199 170 189 221 248 269 298 346 25 180 226 272 334 234 260 313 353 384 428 514 100 124 145 175 150 167 195 219 238 263 311 26 166 209 251 308 216 240 289 326 355 395 474 88 110 129 156 133 148 173 194 211 233 276 27 154 f 193 233 285 200 223 268 302 329 366 439 79` " 98 115 139 119 132 155 173 188 208 246 28 143!- 180 216 265 186 207 249 281 306 340 408 70 88 103 124 106 118 138 155 168 186 220 29 173 193 232 261 285 317 380 95 106 124 139 151 167 198 30 161 180 216 244 266 296 355 86 96 112 126 137 151 178 31 151 168 203 228 249 277 332 78 87 101 114 124 137 161 32 142 158 190 214;;.; 233 259 311 71 79 92 1Q3-"'. 112 124 147 57 Finding Moment of Inertia for Composite Shapes (2)8"x 12 ga studs and(2)6"x 12 ga tracks S(inA3)not Shape needed for Area A(y- description calculation (inA2) y(in) Ay (y-y-bar) I(inA4) ybar)"2 Notes Shape 1 6"track 0.089 0.862 7.5 6.465 4.50 0.092 17.456 weak axis shape 2 2x8"studs 4.894 2.348 4 9.392 1.00 19.58 2.348 Shape 3 6"track 0.089 0.862 0.5 0.431 2.50 0.092 5.388 weak axis Shape 4 Sum 5.072 4.072 16.288 19.764 25.191 Note:Axis zero point =top y-bar of composite 4.00 in I of composite= to+A(y-ybar)^2) 44.96 inA4 S of composite= 1/ybar 11.24 inA3 Bending on the opposite Axis. This assumes(4)-pieces built-up stud/track box sections. S(inA3)not Shape needed for Area A(y- description calculation (inA2) y(in) Ay (y-y-bar) I(inA4) ybar)A2 Notes Shape 1 top stud 0.243 1.174 5.5 6.457 2.50 0.309 7.338 weak axis shape 2 (2)6"tracks 2.692 1.724 3 5.172 0.00 8.516 0.000 Shape 3 btm stud 0.243 1.174 0.5 0.587 2.50 0.309 7.338 weak axis Shape 4 Sum 3.178 4.072 12.216 9.134 14.675 Note:Axis zero point =top y-bar of composite 3.00 in I of composite=F to+A(y-ybar)^2) 23.81 inA4 S of composite=1/ybar 7.94 inA3 Bentley' Microsoft Current v te 11/11/2014 11:09 AM Units syste m:English File name:H:\1405 Do llar Tree\137 Atlantic Be&n \e gm¥Nn 1m5-1p front column.etz\ Load condition:DL=Dead Load Internal forces/ Loads MI Bending moments • Concentrated-Members . . . . . . mm � \ �» 4d . \ / °mom—s[ ) 'y\2y �� x�t 2 6 \ I I \ 4 d ► ' } ® ) 2 2 F \ ;� 6 o \ z ` ` k k 0 o \ /\ { CJ \ N \ / \ \ 0 \ Cc 2\ x< N N N , N - ƒ\ b/ § 6m }� k ` § R s \0' M » » z) )\ ) § § § X 0 \ •( 0 0 G 0 _ § \§ [ 2 . R\O §/ F o o o j\\ \ \ \ � � \ \ 4 \f S f 2 8 0 3 en a 0. %a N N ¥ \a. 8 ce N \ 0m §\ 9 R g g g / \\ ) 7b -1 Lul 2 / 7/ » © _ © q 4 }a ,, , , , , ¥la .- . . y — ) m • § § & § 6 I s { 2d § t U. U. t U. - - — § § ; $ni 0 §I \ 0 \ \ \\ 4 co co N N 0 ® aK k W - \ \ 0 \ kk \ $ | o CO _, () ) ( # ( § ) ) j a ! m L0 Z p•\ / \ ) \ ( 0 ( (cc ex cc cr .Cc cr cc cc cc 0 )§ § ) ; 0. ) / §_ } \ \ \ § \ 0 j} 0 CI } 0 \ § 0 \\ z a ) ) 2 g q , , e § ) j j j ) ) \\ ,8,`" \ / f \ \ \ §\\ . k 00 , - _ _ ^ , 8 o TABLE 2—ALLOWABLE TENSILE PULL-OUT LOADS (PNOT/O), pounds-force 1'2'3,4 Allowable Pullout Values(P/D)on Cold Formed Steel and Aluminum;0=3.0 Aluminum Thickness Screw Nominal Steel Gauge/Thickness 6063-T52 6063-T6 Designation Diameter(in.) - 18 16 14 12 1/8" 3/16" 1/4" 5/16" 1/8" 1/4" 3/8" 1/8" 1/4" #10-16 HWH 0.190 140 182 211 388 404 250 377 #12-14 HWH 0.216 138 186 230 481 496 809 278 680 434 864 #12-14 UPFH 0.216 140 218 252 473 507 837 274 642 418 812 1/4-14 HWH 0.250 170 224 274 431 582 971 ----- 283 732 403 997 1/4-20 HWH 0.250 157 231 282 427 571 1066 1 422 n 1422 281 685 1118 396 949 1. For tension connections,the lower of the allowable pull-out,pullover,and fastener rg5sion strength found in Table 2,3,and 4, respectively must be used for design. 2. Nominal strengths are based on laboratory tests.Steel is compliance with AISI Manual of Cold-formed Steel Design,2008 Edition,Part I: Dimension and Properties for Use with the 2007 North American Cold-Formed Steel Specification with minimum tensile strength 58 ksi. Aluminum is compliance with 2010 Aluminum Design Manual,Part I specification for Aluminum Structures;6063-T52 with minimum tensile strength 22 ksi,or 6063-T6 with minimum tensile strength 30 ksi. 3. To calculate LRFD values,multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD CD factor of 0.5. 4. The base-metal thickness of 18 gauge steel is 0.048";16 gauge is 0.060";14 gauge is 0.075";and 12 gauge is 0.105"; TABLE 3—ALLOWABLE TENSILE PULL-OVER LOADS (PNOT/O), pounds-forcer,2'3,4 Allowable Pullover Values(PO on Cold Formed Steel and Aluminum;D=3.0 Aluminum Thickness Screw Nominal Steel Gauge/Thickness 6063-T52 6063-T6 Designation Diameter(in.) 18 16 14 12 1/8" 3/16" 1/8" 1/4" 3/8" 1/8" 1/4" #10-16 HWH 0.190 557 645 718 718 718 578 640 #12-14 HWH 0.216 619 798 898 1092 1092 1092 586 827 783 885 #12-14 UPFH 0.216 489 624 716 716 716 716 561 818 750 818 1/4-14 HWH 0.250 661, 958 1074 1514 1514 1514 722 1091 944 1183 1/4-20 HWH 0.250 667 916 1076 1568 1568 1568 688 1170 1190 922 1243 1. For tension connections,the lower of the allowable pull-out,pullover,and fastener tension strength found in Table 2,3,and 4, respectively must be used for design. 2. Nominal strengths are based on laboratory tests.Steel is compliance with AISI Manual of Cold-formed Steel Design,2008 Edition,Part I: Dimension and Properties for Use with the 2007 North American Cold-Formed Steel Specification with minimum tensile strength 58 ksi. Aluminum is compliance with 2010 Aluminum Design Manual,Part I specification for Aluminum Structures;6063-T52 with minimum tensile strength 22 ksi,or 6063-T6 with minimum tensile strength 30 ksi. 3. To calculate LRFD values,multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD m factor of 0.5. 4. The base-metal thickness of 18 gauge steel is 0.048";16 gauge is 0.060";14 gauge is 0.075";and 12 gauge is 0.105"; TABLE 4— FASTENER STRENGTH OF SCREWS, pound-forcel'2'3'4 Allowable Fastener Strength 0=3 Nominal Fastener Strength(Tested) Fastener - Tensile, PJ0(Ib) Shear,PJQ(Ib) Tensile, Pt,(Ib) Shear,Psi(lb) #10-16 HWH 866 536 2598 1607 #12-14 HWH 1076 697 3227 2091 #12-14 UPFH 1Q39 645 3118 1935 #14-14 HWH 014555 909 4365 2727 #14-20 HWH 1561 908 4683 2725 1. For tension connections,the lower of the allowable pull-out,pullover,and fastener tension strength found in Table 2,3,and 4, respectively must be used for design. 2. Nominal strengths are based on laboratory tests; 3. To calculate LRFD values,multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD CD factor of 0.5. 4. The base-metal thickness of 18 gauge steel is 0.048";16 gauge is 0.060";14 gauge is 0.075";and 12 gauge is 0.105"; 21 Page t ESR-1976 I Most Widely Accepted and Trusted Page_5 of 5 TABLE 4-ALLOWABLE SHEAR(BEARING)CAPACITY(PNs/0),pounds-force'''''`'5 Steel Fu=45 ksi,Applied Factor of Safety,0=3.0 Design Design Thickness of Member in Contact with the Screw Head(in) Thickness of Screw Nominal Member Not Designation Diameter in Contact 9 (in.) with the 0.018 0.024 0.030 0.036 0.048 0.060 0.075 0.105 0.125 0.187 0.250 Screw Head (in) 0.018 66 66 66 66 66 66 66 66 66 0.024 102 102 102 102 102 102 102 102 102 0.030 111 143 143 143 143 143 143 143 143 0.036 120 152 185 188 188 188 188 188 188 10-16 0.190 0.048 139 168 199 228 289 289 289 289 289 0.060 139 185 213 239 327 404 404 404 404 0.075 139 185 231 251 337 427 564 564 564 0.105 139 185 231 277 356 436 570 808 808 0.125 139 185 231 277 369 442 571 808 962 0.018 71 71 71 71 71 71 71 71 71 71 71 0.024 109 109 109 109 109 109 109 109 109 109 109 0.030 125 152 152 152 152 152 152 152 152 152 152 0.036 136 170 205 200 200 200 200 200 200 200 200 0.048 157 190 223 253 308 308 308 308 308 308 308 12-14 0.216 0.060 157 210 240 266 362 430 430 430 430 430 430 12-24 0.075 157 210 262 282 375 468 601 601 601 601 601 0.105 157 210 262 315 402 483 624 919 919 919 919 0.125 157 210 262 315 420 494 629 919 1094 1094 1094 0.187 157 210 262 315 420 525 642 919 1094 1636 1636 0.250 157 210 262 315 420 525 656 919 1094 1636 2187 0.018 76 76 76 76 76 76 76 76 76 76 76 0.024 117 117 117 117 117 117 117 117 117 117 117 0.030 142 164 164 164 164 164 164 164 164 164 164 0.036 156 193 215 215 215 215 215 215 215 215 215 /° 14 0.048 182 218 253 283 331 331 331 331 331 331 331 /°-28 0.250 0.060 182 243 276 300 406 463 463 463 463 463 463 0.075 182 243 304 322 424 521 647 647 647 647 647 0.105 182 243 304 365 461 544 694 1063 1063 1063 1063 0.125 182 243 304 365 486 560 703 1063 1266 1266 1266 0.187 182 243 304 365 486 608 731 1063 1266 1893 1893 0.250 182 243 304 365 486 608 759 1063 1266 1893 2531 For SI: 1 inch=25.4 mm, 1 lbf=4.4 N, 1 ksi=6.89 MPa. The lower of the allowable shear(bearing)and the allowable fastener shear strength found in Tables 4 and 5,respectively,must be used for design. 2ANSI/ASME standard screw diameters were used in the calculations and are listed in the tables. 'The allowable bearing capacity for other member thickness can be determined by interpolating within the table. 'To calculate LRFD values,multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD 0 factor of 0.5. 5For F.=58 ksi,multiply values by 1.29;for F.=65 ksi,multiply values by 1.44. TABLE 5-FASTENER STRENGTH OF SCREWS1'I'''4.5 SCREW DIAMETER ALLOWABLE FASTENER STRENGTH NOMINAL FASTENER STRENGTH DESIGNATION (in.) Tensile,Pt./0(Ib) Shear,P../C2(Ib) Tensile,P,.(Ib) Shear,P„(lb) 10-16 0.190 885 573 2654 1718 12-14 0.216 1184 724 3551 2171 12-24 0.216 1583 885 4750 2654 1/4-14 0.250 1605 990 4816 2970 1/4-28 0.250 1922 1308 _ 5767 3925 For SI: 1 inch=25.4 mm, 1 lbf=4.4 N, 1 ksi=6.89 MPa. 'For tension connections,the least of the allowable pull-out,pullover,and fastener tension strength found in Tables 2, 3,and 5,respectively, must be used for design. 2For shear connection,the lower of the allowable shear(bearing)and the allowable fastener shear strength found in Table 4 and 5, respectively,must be used for design. 'See Section 4.1 for fastener spacing and end distance requirements. °Nominal strengths are based on laboratory tests: 5To calculate LRFD values,multiply nominal strength values by the LRFD factor of 0.5. li" '.:1 E•---r-T-r-1 F.r !-r!-1 1-77-11--H7i . , . 1 ! ! ! ! 111 ! ! ill 0 7„ '4"4-/S27'111.2.T.211,1F,21;32 ;V,“ ,, -m m cn,cn a,a,,r3;0 co OD c0 00 c0 03 N,N N 1,- 9. r- r- cn cn a)a, a, 0,0, 0,0, L.(7,4.,,01 CO 0 0-. 9-03 03 CO! ..0 '-'' d 0 0 Ci CS Ci 0 ci'd 6 0 0 0 0 0 0 0 0 0 0 0 6 6 6 ci 6 d 6 6 0 0 ca 0 0 6 ca 0 d 6 0 0 cal u •:: go : . 1 • . . c o , • . • -o o'-silttif414111S,'612'418:1. 10;RA8T t7--7“,=;321.2,TIFirpRR58TZISA1 :-!...,-:. c,0 0 0 0 cs,0 to to to 0 cr,os CO CO CO 03 co ; .- .-- .0- 01 0,1 a),1,..4...,1-....;l'• L_ ..i'X'!.. 03!coi;03,03,030.3:03,c6cOricinoicOcoricOc,i0i,cooim 0.i.0/ 010/ 0.1010.i0.300.100-i0c0cOvic4'cOMOS e •.. 2 , T f; r . - : 4, :: 1 . .. .. :,co- cv CO 0 4 m Do o co m co•co La - V-cpcnoco F,,,, <0<Al<-- h- co glico co A. <0 co:Nis0l m m on.r- co 4 ,- r- co 4 a ,--ko •,-- a, ,`, '-' . , : 1 '." •-- g i-r6;co -5 cix.c k0,c0(0,0mmme0o0(slesi(Nrsicsidcodtp-ddcl 44444LnLw ,LAI, mm . m, : 4 .1c0.1t0 0 3 TO *0.5,'':!c5 Ci;99999 , „ , „ , „ ‘ ‘'(' 9.999999999999 9 9 77'7 ^7. .. O . ' 3 1 o . t C 3 .2 „ o0MWO,MN .1. 0 ,inO-OulMm0000g aggocor- p1401A1.41.Am22 (4,Jkligg , e -! , - .-, tj c m c.!.,r r...o u).(=>Le)c> -cn r- co, I,- co co co ,o • • • 'CT LO PL. CO ev, ,-. cer•e4 v>,.-:(0. •-, d 6, e-co el, .1 .1_, : j ). ..--' 6•-• •-.--ri.-r,i r.i ri 4(si pi 4 Lri r'. Q5 r-: cri a,"'t 'i.i,,, 0 ci ci o .- o o - - cv.- c.,cy ,., 4 4 u)r....0 :X .. • 0- CD:rS.C)*!-M2.U3s"nC"*'- q"S"'"- L° 'D * .44C9'lf7cT .97. 2g'SC'Y4T'ICTlitSg -SICTO 0 r.) .4 7. .... Oce-AtiPlg.° - mr7. 7e- gc.21grZ2V412.,T3P: o00. 0 --,0004 ,0 - ,c..0 .0 ,- g0-. 1.-■-Lw0131$01 ..5 CC a. 0 7,:" 6-6 6•-ei ó d d ,- 4 6 6 6 .- 4 6-Cll.-4 6 .-vi 6,6 6 6 6 ci -, M 6 6 ci. ,eficildicil. 14 ..,, It. -., - I : • • ! -i -1.. .1 i .. . - 1 • : , •, . la .7. , •--a, - mcnco - m - mm .-i i o 0 nr, , 02.nn 104f0 .4..- 00 -031A.-,10000 ,4; , . - A 040.. „, 0N- m 001 .0 cAmm ul -o4] X CC 03 I I -I-0 0 I I•§t •-r) I I cr, - 0, I h to 8- •:* I I 4 f,•,,, g 1 I i,T,•-,,,2 7, I 01 CO CO ; i CD c13 ..o- <•0 to ..o '', .o- co t -7., el .rt f•-• j :.st CO ..,f (00, , t0'° V. WO, . ,IMO 1°"") 0.1MW 'lit'''. 2 , • . , 0_ • I1mg ,,,,,... I 1 csl 8 4 I I .1812 I itel :8 A - el I I <0,-.1 I. I -04 7 I I .0 010) I! l'C.ASZI 0: .-:.:ei - 0; • • " ei ri - d -- c‘i d - C'C'.-r-ics' r-IN'n - - . . . 0 0-• 07 0 ...! . . . : • : ,T, e ._ . •• 1 1 1 [-4. !Igl 1 2 rsi 0 8 0 c", I I ql T T I 1 2 A T 1 it 0 CO`. 6„.:0 6.i.,-= r.: 6s--:.6.4 46o5 , . , ,1 co 0, vi r-, . . , : • : , I 1 '4 ,2 ..■ _ . . • . • 0 .7t i ..5t .g C AI C 1 1 g .s E "I §§ .1.‘, 0,co,vo 0, I-- ca co,r,m to s.r, :0)co - ke cA 4-a<A r.0 u;)<;ri) 'IZ'W.2. :-.Li; 4- 42iSP)),“8 Lre§ a“.3N ,= 0, 0000, A•••••••2sig--., . .2 RZT2,%)%1.7.420"-12-2,113 f...2c0Tcrii2VA;°c-?. 8 ;--„, (AR:gco.-)4P[i 4 .222 7" o. .- t ''''' '-x- .-(No, ul -csic.)4,pcs, r) 4 ,n4J-.. <‘; A - -04 Lo .- 4-,ea A.:‘0:4-e4 0 A 0- I i 1 .; 00 o - a. ' • ' • I I 17 2 - ----- ■ - 1 1 ' a ; - 1t-tIi i-.0 it-0;"a;1•-a od•. •.1,0 4 0 0•••i A<9:2 ‘,2 irr'i -'2(6°0 F2 fz,3 " ... ,,, 0.■ CD 0 1--. ,-- <0 .- f■ •- 03 0. 0) el co c3 C) r1 1 r - r4 6 __,•-.' .r,P.I.q, ... 0•=0. ',. '--.<N. cs'.r.-..<1 *. "_?.T. c_'?el 04 '? Q). 0). •:01 v. (°. 9 .1*. V. •t. '---. •-..'..-.'. ter 4, 0 Zr -c e it: I.., -0,0,77 ". „ .-. ,,,,,, ,- e4cA 000 000 ,- 0100 ,- c- 0300 - ,- 0, 1 0- 1-,7. / -- / I • • . , . . ti- 12 31 IA ;a Q > i Pi 03 I r, •,),1-7.11-.°§I§§g•0'g,''S CT C71 07 0-,.'°!c%&) 'T 0°'cor'! C.2 1 i'4'. '7,4 C71'It'P- '63 0-3-'0--2 .9 2 7.t-c,''.)1.12 `81,5-4:'ig-igi „ 0 .4 1 _ .■,.... i co:, c,,.. - 0,0:- c••!E, , ,•-•, 0.t-•.,!c").T. .1. ‘r ,..o cr, ,r,to m cn m 4 n o Lo m IT'4.1:0 4-41: . IA 0 Li V 03 01,id aS cai ei v .-i r.-:6 4 Vi c.C;03.- 05 0- 0 CO!C:i .4. 0i 10 4 t-ri e0 6 6 4 d 6 c,i si Lc, r.-: -'<6 4.05 co txeC W .- , , 1/) 1 -0 (-) o . • .t .a 1 ; f..v...,..,...,,,,,,,,, ,,..,,, ,., ..;..m m — m, — , 0o**F.7_,,, , g4Qa .. z « I • ...-i. . ..—C''C....<.-,,— —0 0 0 c.... co co c-- 0 03;0 1,3: •-• 0. 0 0 0 G)Mar o,.... Lo,,,,...r...,... ,,,,,,,, co co 0,co 0,o. opb .1<A .0 .0 .0 r0.0 cA,m e3 kr; L0 LO 0 01 0,0)(71.3, ....4 0 6 6 6 6:6 0 6 6 6 6 e5 6.6 6 6 d 0 0 .- - -: 0 ci 0 0 0 0 0 6 ci 6 ca 6 d d o 6,6:6:6:0 11 I i , • _P. R ,,,° 1 . . --2 I i 1 i . • •..• e 4) . 0 a I • • • -. 1 i c:•.ci 0 d d cildici d 6 6 6 6 d 6 6 6-0 0 6 Old d: 6 6 6 a 6:6 0 6 6 6 6 6 6 6 o Ole a d 0 3 ii e4 A .... CO ... i I I - -2.--1-•• , , , • , , : i. e ... i : io ,... ,.... • ..-. A.01 .4 el 0... LO 0 0 0 C, 9.. V- CO 0 0 CL1 CO 0 0 c0 La tO 9:. o r-- Q 0-§;CO 0 LC,0 co .- 0 0.-0 Lo .,:c 03; .t.: 3.... s .f. f ° , ...- 0.034.00, m0010000W0 ,- 0 ,- ,0, 0 c0 -100-. 001, ,.- C.DcON ,--. 0.0....-o. , 0-00 .t ! ='-'9 0 g; ‘. . . . .C'! '2.94 91,'2. -4.././CO .--.0°I 7. .? IZIQ!0 0 0,10.0 i•- .- - -. 01 ,4 01 0,.L9 '0.0 - 9 *0 0 - do!oodo 000000,000000 .- 0 - •-, 0 000 .:D000lcoocpc. .00ac, 66 . - 3 -2 • i V, i 'a. •.' i . 8 2 , . . , : , 1--+- 1 • '- E ° o.. 2ov- c o , o mr-,,no,cv0000r <,o.r-.0 lo- com,r--ww,, co -roomm , -s,c4mR8o4mm,c2ggsa . i.. v.2 UTI 44 ,4'.PW1,0103.-,V-00,0,..- 00N011,0.9, 000.1110..SN 00 CC.7. co CO CO'00 ot3100034;04.00 c0:43 0 ;0, ;3 c0 r0 0- - - co co 00 03 CO c0 c0 CO . 03 .0 0 0 0 0-,.-,. ;0-'01 1 I L. II-5 c i, •7 e4 ei ei el 041C4;eileVei 0I ri ei ei elIcA ri ri ri.0 ei ei 0 •IN C.9,9,0, 0, 01 9,0; 9,9)C0 '2 C`i 9-i c2 i OS1 0i134 0.3 o 0 E 0 -e $ g . .Ts X O:I----- 1--• : • h "g . . 1 .. .. . li,cAgggs4swaP.. .(; p1c7,gc4s".'27,%.17-. c-NJ.:gg,'Az6w, '91z22 ,13 ,7,P. 2“;-.7.8irgh=it '14i ,— )... ... c .ol07!-4-.. - co.c1 qmoo. com- 0,00 ; 1 .- 0.-n...-...-eic3;.-14-;.-c-A .- - .- ...1.A - - ei ri ei ei c-i 6 d .-:- csi 6 — oi d .. .-: - c.i -.:..-;.-:joil ri: r 1144 iiio f.,7 L7 im-o tro • ' ' ' • , • • . . . . ... ...f_..,_.; E . . . L.. 1 : : , : i : ,... ›. . W — ,.01 4.1 e4;I.-0 L0 0 co 0 A; cs;00 cn 2 Li) -- a)f 2 . <0 2 , z " 0., . co 4 c5 r- .- s -!r)•4,1s ' ,T, LA CC 21 .-; — . ..7. 0),Fidcgioi:ri46, c,i4.6<occi.•-(61■ cri,c4 OV. c,i,e.54,filcOri .460ioi6405t-:'- oluSolifd4 .171 w CC i i I illi : 1 , ' '-I-4-1 LU ! 1 T--r-7-1- 11iiftt . tir f : : •.. 0 12. • 11.-lesig.,ul'r- 0 .1 ..ro,04'1,-.:coor-'moor-'omm m.m.r.,....0--,L41-NiwAn. -ch..4-03-oics.Wp..,..-lz ce '- gqc,,,avo -Lmr-- -.11,-.1m0,.01---c,, mr-r-,* .vr- cor- m-a ,pcom ,,,,c0 - -1r.-.1 -0,Waflimic4, 0 e-c"....) <DJ--:.c.-1. ,,, ,Dz0 - ,47 ,nr- cor..,w ,o,,,,o'40,,I. mi-.01.--. 0 ,-, .T .7-r- - ..: '0 .) ,,,, vi,oirticniv.Y1, 6 6,6,6•-,cic:i 6,6 •-: a d 6 6.-6 6 6 .- 6•-:i...: .6 6 6,6, 6 6 6,6 .. 0000 •-,Oiciioial-1 i a. • -Hi . . • , ■ , 1 . 1_E 44 4iiiiiiii- . Etf-- t .--,— .. . . -t-h-r-1Z • : : -• • : e o .....t, ot-co'<o co- co co O 9,(0 c0.-- .0 A 0 LO 9, a, CO 9- 0-) -A- 7_ !Y. 7III al'i? 92(N:9."-.9.-,1--1It!--..7.-- •Ir V2,"r -,.,,:,_72 - '6' 4...: • ig .. ellr-:7(R'''. "r. .?'4 'n.LQ '''. V. 9 '-'. .-- ''). ''. .)..X! Ln. 9 • '''. ‘-'•“1 .1 ' ‘.! •:'''. ''-'': L4't-.!7..I. 7 r..'!'t 0 c x .?..` a k .e.le•.(N,c s,,,,)■-• .- ,..(s,r),.-1-,t\V V)V ,1 0.1 VI cr C•1 0 L0 - - N 01 M . ,- cA:04 01-. 4- eile444 .-0.1e4rAAtic, . f g ;, ? • . i , , ; 1 i ; ; . I 1 ; 1 c' ..a " ' -,-• >. 0 < • , F. +-4- . - ---} 4-i i I-1- ,--i--H- 1 ' i' 4 I'f 1 H-H---1-1 g •?. '4 -x g '4 1 1 -.5 r, 1 3 1 .2 , cr ,J-:- .m,.•,,, c0 ,- 0c0, 0 .-- 010-c0:.-com,.....co Cr 141 0, 3 G TS I:2.`"L•W.7',,(8:2:---(A)zz:S:- -,,2 ,v,2 r:._1 .. .z . .2 , . z. 1..... ., . v...,..,,,,,,,.. v..,. , , .0, . •.- , . ..,, ,,, . ..-,,, ,- . , 0: 2 „..- o o • " ov:..0 6.66.-0000 -o666-000 .-66 - gqqq7opoo - 0000 - c3 -..z,71 . i.i.'z5zt v-, --- O:iE 0 6 6 6 6,6 6 ci 6 6 6 ci 6-6 ci 6 6 ci 6 cilci 6 o co o o co 6 0 ca 6 6 6 ci 6 ci 6 d 6 c) ci co! E •i 75 51. t 0 -0 0 , „„ 66 . . . . • , ;.... c 1; 5 ••• "2 _J r-.co 03 0- , 0- 9)0", 03- c0 ...•e3i gni ,r-,,,- cA r..r-r-r...r...16:r14,,," ,-11' 6,6 6 d 6 6 6 k 6 A A A g:. ■-- cn -8 .0 cA e3{0 el;0'..0 Lo .0 .0 0 0 Li"L0 ;0;0 10 01 cA .4 0.1 04' Lo A •S'A 6 8:8 I 1 I .z .7. t r, ,6 .g. 0 E ' -0.“-4,,,,,,N,,,,, ,-4,, sole) ,cvo.lcvNo.l.vo III 7. 01,. • ° WWOWD,(0(.00 owo,(0c0c0uovoc0t/vowvo 1.--i.-1-- 1- 1- 1-1-11-1--I1,-1-.1-1-,--A--1--• li p. • coo:c )- to 1 '.E 8!8.81 8 8 8 8 8 8 8 8 8.8 8 8 8 8 8 8 8 8 8 8 8 8 8S,8,88 8 8 8 8 8•8 8181 , >- CO co 40,40.00 os co co co oo co co co co co 03 co co 00 co as co 03 CO CO CO 00 c0 c0 GO OD<0 CO CO CO CO CO 03 CO 0:),001,03 o * i - ' 62 u a. PISA 1 ...1..8 a r ‘1 ► co O,0) 0 O.-N 0:M U) 7'0 7 7.N Cp-• -._ Q so�i 0O a• , ■ . o o o o 0 00 ) O.() O 0 n�g.CO.I`�C8D. CO.2 CD N NIC8' 0)U 0 U) O N DN) N fit pN VI8 O1I 2 N ^ r- � L t0 CD a0 (0 CO O t0!�': cO o 0 0 0 0 6 0 6 0 0 0 0 0 0 0 0 0 0 0 O 0 6 O 010;0 0 0 0 0 0 0 0 O o 0 0 0 0 0'o O U T. oo,.. .. .. . C �+ Cp Op } y +I, L CD O"' N O cT n CO 0)N CO .p0 0 N 0 N 0 N � CO V' O N co 7 N N N N 0 M 0) 0 V. V' •O -D <D �O N N N! j U -o -g (~ D 7 7 co co,co N CO Cn O m c o a0 co co - - - N'N N N N N N N N N N N CV N N M M 0 M M M.M N N N N N N N N N N N N N N N co Cn C7'C7 M ro . . . Y u U pp CO Y V O.O co COO C07 r CO 'U cNi n uul Op N CO ca) n COD N O OO) a00O. n .- 0 CO CO p.0 CO 0 N CCOO N d •7.(7 M N. Uj '1' 0,11O-1•••••• « L.. d X co N C- Si- n 0 0 Cr 0 0) 0 7 7 'f M 00 GO CO OO N N N iti C')CO CnA p co Co cD cD C0 0 0 O 0 O CO GO CO;c0:CO 9 i Si T Q 7 : 9 , , . , , , . , , N CV N i Oi 9 T 9 9 9 0 0 0 . : . r c C c ; C r d co (gyp �{ f pp (fps Qv u O !FO- o.c !co O CV m O M 'to ? N O CO O 0 CO OV 7 Cr O) ? CO m n N M CO C CO O CO (07 0 0 - 0o O Col n 7 V N'�[CV CO Y._• >` OI 0 0 0 - O - - - N - N N M'7 M 7 Cn O Co n 6 0 0 0 0 0 0 0 0 0 - 0 - - .- N N M 710 n'. N q Q I W E x o • « O . o-•- A a N T p 2'CA N N 0) M CO CO N N 0 0) O CO 7 Cn n nO 0 N 7 C7 N N QQ CO V M O y N p N O u'C 1 o O C -.N N.o O - N O - C) - M CO N'O c7 n 7 g n n'M c- N .n- O O - N ) O .-- - co p N 7 2 N;p - C X "" .--6 O O O - N co 0 0 - 6 0 0 0 - C7 0 O O;- 7'' 0- C . y O ...... 1 COO - I- '-••• O 2. a o_CO SSw� 1 N...N.7 N O O M CO O 7_ CO O N N N CO — N CO 0) CO_ 0 N CO'O)�_ X a' m CLI •I'3:i.v I i I N t7 CO I I CO LO I I CO CO (0 I CO') CO 0 CO CO.CO I I .n- CO CO I I CO CO I I N N CO. I I N;0 CO CO h i Y: CO . , •C III nO7 I I I 16 02 tN I 1A I I COCA ' I I m12 I I Nom; -, O - - O - - 0 - O O - O O - O - WI 1. -1- . -I 0 7 CO O CO 0I C' I CO N N I I O) Cn CO W I I 82, I N- Q 0 N a' I I N 0 N I 17 N- I I CD N C I. 'm A n < M 7 CO 7 C') 7 O CO CO 7 Q U CO CO M ) c) (0 1 E • r? I } . J '«O ` L ' i „� n 0 n7n N- M O N nW O N M V — WNp y i C §N D 7 7 O I'D n �D - C7 0 N N n N 7 O CD co' N_ c') CT M N N U)nO CO N.N o 0 CD o M a p O N. g cD!N N) A •O] O C O C m- , '- N' N N M - -N 7.- N M 7 N M CA ! CO M -. N CO, ”' d S O O 0-• 4t 1111 4.-1-1-4-1-1,— Q jD. 4 -k� 1 I..:. t..... 1 -I• r f I "{• _-.1._y. .1 :.T_4 I. ,? E c c O ° •+T I CM7 M - W t'Cr n 7 CO n O 0 O COO N CV 0 CO N 9 NC O N CO CO 0) N 00) CO O N CO CD CO N CO N N 7 M (COO 0 t(CC V < N 0 'FYI N,•E CD O 7 N n O) - CD 6 0 :ch CO 0) u? N N M N 7.CD O N N 7 c0 CT Cn M CO n co CD M CO Co - W i Y C r V �! i 0'0 0 -- 0 0 0 - ;0 O -,-•-•0,..- I1I1 O - N - - N 00007000070007700077 j d Co •; ? 1M.1 I� l0 01 0 0 0 N N 4'O' CO M N OI N'c0 N .�N 0 n - CO CO c70 0 CO CO N CO N CO CO N.0 CO Cl) 0 00) 0 CO 00 W 1 V y N N CO 0 a_ p1 (p ao _ fCO O c _ C iO 0 CO O N GO CO CO V) CO O CO M 0 co 0 CO c- CO N CO M 7 N N M Q7 N CO CO p N n CO O N CO n n V• N M T a y) CC (J 1 — N N M '4' N N C') CO.N N M CO U) M C') CO CO CO CO n --.(V N 7 - - N M 7 - N N co CO - N c') CO CO Y x ; w — i n V a 'CV- , I ■ 6 N M CO M n O .- N 0) N CO n M n co — CO 01 N 01 1�CO N n CO 7 N O) 7 N O N - N O 0) Z - CC Q 7 CO a V- 7 u0) C i N CO V) n n CO N N, ON) O COT 00 0 0 03 IN 0 M M co M CO co) < < d 7 0 LO COD_ CO VV') COO C0) O) C.C') 0 0 u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 66oO O o 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 o N Q « - N 2 Vi. 0 0 0 O N Q N,N CO -7 2 M N c7 M 8 V V) CO CO O O O O 0 O CO" O O -V CO N'` N N M 7 0 N 0 ---7' O o 0 0 0 0.0 0 0 0 6 co o 0 0 0 , 0 co 0 0 O 0 0 0 0.0 O co O O O o 0 O O O o 0 o o o q V - K m A y p Op fQ�� 0, p 1 >,C 0 n . CO N co CO CO - C) - CO 0) 0 C) CO C) CO N N-N CO CO co 0 ccoo co CC) co O) O CO N cD 0 0 CO C7 0) c0 NN-O ] d N V vt- n 0 O N CO - CO CO - N - CO N O M Cn c0 00 C7 n N o 0 C0 0 0 0 0 0 - - - - N N C7 O O O N N N N M 7 N 7 N CO CD CO O O _. o 6 c o 0 o 0 o 0 CO o 0 0 0 0 o 0 0 0 0 o-o 0 0 0 o o 0 0 o 0 0 0 0 0 o 0 0 0. O r _ nC Y O C C O CO CV MM�pp 8 f7 00pp CO u�,CLI COpp 0p ] N C C y Z CC V N N N N " N N N N N A C') M M N C') c7 � M 7 7 . -N N N N N N N N N t7 C')co C7 co:7 7 co CV CO CO 7 C,')U) <� � Y 5 u C O. N N N N N N N N N N CV 01 N CV CV N N N N N N N N N N N N N N N N N N N N N N N N N.N.N 0 E Y L O C r. }} J 0 U V' VI-. N CO CO O 7 0 N O 7 c0 COD CO co M CO O N o 0.- 4.n CO N CO q 7 CO n co LO M Cn co co 7 O N CO C0;O N Co co O N!n 7 O Q y•'-' 066 - •- 660 - .- 66 N - - N O O 6 o - 0 0 0 - - 6 O - - - O - - N U W W C V) a 2.1 - + n O 7 M O 0n ') NN '- pC' CJ O V N N 0 N N N M 42°' D CDQe0) WpM_ N O N C n 7 030) pM CO 7Of N 0) — __ _ CO O CO O N 0 0 c0 I 0 CO N 0 O co N n CO M 7 7 0 0 0 N O o co O 0 0 r.- 0 P N C{"" CO— N N M 7 - N N C) CO N N M 7 Cn N) co C 0 7 CO n - -N N 4 - N CV co 7 - N M M N N M 7 CO n w a _ _ ^ O CI_ t- O M 7 0) 7 CO n n C7 O N M p N Cr n O Cn 7 1N 0 to 7 M 8 N - CO 0) O M CO O 9V 7 - 0 77 0 V Y N - CO O CO CO CO 0) CC) 0p Q) CO CD 7 n 0 n N O n 0)CD CO O (O O O CO CO N 19-.)-t0 M 7 N CO CO CO CO CO CD O C7'7 CO n O LO CO — l am O) N N CO I CO GO M R CO CO 0) co CO CO N 0 CO N CD';0p N' n0 � O `t" , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 - 0 0-0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D- a_ CC I t +-'-_. ' 1 "--# T_> _. 1 I t . I i- a of t. N Lb i m N 0 40:010'61010 cO IC,m O!f- 0o o O co co c0 to co co co?co N N N 7 .0 - a I �s 00IO n el 0:!.M el 11 to m 0110 f0 CO:CV 0 03 yr O N O CO 0 0 0 O M n - CO CT 7 7 7 CO M CD O Y •V - - -N td -!N MI N N M) N M CO - N N - N C') - N M- - N N CO. CV n •CC '0 n V I>- ' 1 # iN N MC d w x y C- _ 1 _ # co E'ICgpy�,. M M!f� M'n CO n 0 -� Mn� � Mn D �C .0 CO CO M-f0 co U).t0 M^I gi0 01710000. 701.C:77 I CO:Cp 0 'rio• ) 7 N co CCC) CO CO - �p -. C 3 C • [L•C c CO n o CO 0 O O CA O Cn o q CA I� o M •u7 n O C'� n co' CCf f�O o _ N • Y ;o OO - 0 0 0 0 1 00007000107008 6 O 0 0:- Y r r )- `` O,p +0 0 6 o 0 0 0 0 0 0I010'O olo!o'o' o 0 0 o O 6 0 0 0 O O o O O o O O O O o 0 0 o'O: O V O -0 (n 'M CO n M M CO�O!N 0' { ! 0QI�IM OD n CD n. M M CO 03 N-CO M M M m n M M 7 cO'n 0 0 0 O V , M v to C 0) Mv -( {�Q�JJjjI{TQT��I!��QQ[[jj IOQQjjQI QQ�I cO tdQ Od)-.��{ t(Q� 0) el 1.CO CQ W M S yM CO c4 O)c7 j 17 CQ.O r C C C y n 1� C- t: n r N.N N N-N O'O!G,0 OI 'd cO a O 1y Cf)t�ch s0 ,126 'CS g y a O O d O d g S $ « E •' 'O G ~ Q (/) n M M M M M . 0 0 4,10 ; N V N N N N N.L'-' U) cO 0 0 0 "C=V:' 0 0 c.) _ N N N CV N N N N N M CO«(i) N N N N M M CO M CO 0 4 o " - _ NN.co cocnN,01c r)nccoo�c oo•(8 n0cocppn20.ppN(pgn(8ncn1/)(8nco Fpp- F-8 ir- 0 0t-Hir-1- 001- 2- 0Fp- I- 22- t-- Ipp- c to n .t 'o p0p o QQ0 so O''. t0 CD 8 t0 10 •0 c0 CO 8 (O 8 C°D 8 CO CO'. CO 10 8 90 90 COO 9 8 COD 990 tD t0O COD CD CCC COD 8OD c0 CO ;� , 0 0 p O ,m c00 t0 so tD t0 C9D p i l l s...; ]u 1_9 o o " " Y o 0.. r .... ... 40. = N C Y. Z a N t CURBS & WEIGHTS DIMENSIONS — 50HC 07-09 NOTES: 1'1'1 1. DIMENSIONS ARE IN INCHES. DIMENSIONS IN I I ARE IN MILLIMETERS. . I 2. fii, CENTER OF GRAVITY «aau(.roe/041/00/I 2AA I sn, 3. 114100.DIRECTION OF AIR FLOW • - ,, , _ _,_ _ ��w�• 1331 16 WA.Ali '/r 1 u f1 - 0044((3 I[ . . OAAU 04[11.0 (Ms[IU /I/' mi. ini i. iiiii iloir } '.• .[[tar :0770 �107ilnr I =.' r.t east Al. 0x.11 I451 ILA ins,rr i i 1 2,3/N —1-lit L I-1/. UPI �_ ten 11.11 1).61 IDP es•1,t— C) um = ~. .�N —.0 (] A•s 4-0/15 II) 11181 — — -- • ELECTRICAL DISCONNECT CONTROL BOX • CONDENSER A. LOCATION ACCESS PANEL •COIL B•� G 4 OPTIONAL INDOOR BLOWER OPTIONAL ACCESS • INSTAALLLEED 27.778 J FACTORY • CONVENIENCE UDR) INSTALLED OUTLET C^ DISCONNECT ,. 1 \CO HANDLE CANDLE L.T.. 1T'— -' �- .[C 6-SIR- Lt 11681 s5 uz Cj00 _ - 00' 1-)76 115101 If sI 2-5/8 y I_ - LEF T 1671 TTP 88.1/8 CURB 122381 WIDTH FRONT i-VA 11.71$ 1)21 13021 - 1_L . .. • -1 Z _q I DRAIN CRIER-- S10-- FILTER ACCESS PANEL coNOLAIN (TOOL-LESS) DR i wow . { • .iR I CONDENSER 133/8 /-- 21.374 J ti ou4s10E • COIL 13311 11031 —� .1 y,A j4I i 1 k SUPPLY AIR 1 ♦ INDOOR COIL L.Ire ACCESS PANEL 11111 11 I • 1 6.5/8 E / L N-1704 t 4.3/6 - 1(11 It77,11 11551 4 11131 1$62621 1 42.3/8 BAROMETRIC S01rL1 11015, RETURN 061111 AIR AIR /ld RIGHT BACK CONNECTION SIZES THRU-THE-BASE CHART (FIELD INST) THESE HOLES REQUIRED FOR USE WITH ACCY KITS: A 1 318' (351 DIA FIELD POWER SUPPLY HOLE CRBTHPWROOTA01: 07 CRBTMPWROO2A01: 08.09 UNIT J K H 8 2 1/2' 1641 DIA POWER SUPPLY KNOCKOUT 41 1/4 33 15 7/8' C 1 3/4' 1511 DIA GAUGE ACCESS PLUG THREADED WIRE REO'D HOLE 50HC-401 4 (6581 14031 CONDUIT SIZE USE SIZES MAX.)I 49 3/8 6 3/8 IS 7/8 D 7/8' (221 DIA FIELD CONTROL WIRING HOLE W 1/2' ACC 7/8' 122.21 5014E-006 11253) 9251 14031 E 3/4••14 NPT CONDENSATE DRAIN 0 1/2' 24V ' 7/8' 122.21 4 /8 36 3/8 15 7/8 3/4. 1001) 1 1/8' 128.6) 50HC-D09 112531 [9251 14031 G 2 • 1511 DIA POWER SUPPLY KNOCK-OUT Y ) T/4 1002) POWER 1 314' (11.41 THRU-THE-BASE CHART (FLOP) FOR 'THRU-THE-BASEPAN' FACTORY OPTION. FITTINGS FOR ONLY 1 1. Y ARE PROVIDED: 11) 1/2' U 11) 1 1/4• ELECTRICAL FITTINGS. 010519 Fig.5- Dimensions 50HC 07-09 25 • C • CURBS & WEIGHTS DIMENSIONS - 50HC 04-06 1. DIMENSIONS (—ieoi° 1 1. DIMENSIONS ARE IN INCHES. DIMENSIONS IN I I ARE IN MILLIMETERS. • 2. 50 CENTER OF GRAVITY fla°ii°'°11i00D iiou 3. MOO.DIRECTION OF AIR FLOW - ; _ ,4(1"i I �'\\ • n•sle --' .� /) � 1I1°OSi1Alt I1-I11 17121 11111Y .Y . � �H All C All -il C4Y011SAR 11.311 I °ui:Msii'A51 1111 12 I 11111 [ - SMII, to ll? .VIII, 11111 111 Ii�11 11 11.111 14.1I1 171111 . 511 lM1,M IY311 OM 11171 1 M![fuAi • i ( I 1 1 131 7S —1.111 11111~` 1651 —12.14 U 12.1/4/2 32.111 17117 12-11 1°l°7 TOP valt�• I 1-1/4 14701 CJ 1321 __ 10 a - FILTER CONTROL 80X • INDOOR BLOWER E STD. ACCESS PANEL ACCESS CONDENSATE DRAIN ' 25.1/8 OUTSIDE 16381 AIR 16-3/1 RETURN OPTIONAL ' I 11-3/8 14271 12891 I SUPPLY AIR AIR \ FACTOR! 2t-1/4 DISCONNECT I,�/P '_ 15391 . 1551 _ _ _ i�j00 0 (.681 7 6 HANDLE NANDLE [168] 11171 (1521 26.3/4 16811 BAROMETRIC 31-1/4 RELIEF .. 74.3/8 .+ SUPPLY [793] FLOW 118881 AIR RETURN FRONT RIGHT N • .I __..• -.— 4-5/8 FILTER ACCESS PANEL - [1181 ITOOL-LESS) COMP. 1• ACCESS CONDENSER • PANEL • COIL• COO;DENSER DISCONNECT INDOOR COIL LoCATIOM - ACCESS PANEL OPTIONAL 11_ 11 -ELECTRICAL t • FACTORY 19.1/2 INSTALLED [494] - 3-3/4 • CONVENIENCE [95) OUTLET 6-5/8 :: 1 ::jo [1681 2-5/8 .I t BACK (61] TYP 46-3/4 _ CURB (T18T) WIDTH LEFT THRU-THE-BASE CHART CONNECTION SIZES THESE HOLES REQUIRED FOR USE CRRIMPWR001A01 UNIT 1 K A 1 3/8' 135] DIA FIELD POWER SUPPLY HOLE CONDUIT SIZE USE SIZES EO'DIHOLE) 33 3/8 18 5/8 B 2' 1511 DIA POWER SUPPLY KNOCKOUT SORE A04 [847] [472] w 1/2' ACC. 1/8' 122.21 C 1 3/4" (44] DIA GAUGE ACCESS PLUG 0 112' 244 1/8' 122.21 50HC-A05 41 /8 14 7/8 D 118' 1221 DIA FIELD CONTROL WIRING HOLE I • 3/4' 40011 POWER 11/8' 128.41 0/ 15 [377] FOR 'THAU•THE•BASEPAN' FACTORY OPTION. 41 3/8 14 7/8 E 3/4'-14 NPT CONDENSATE DRAIN FITTINGS PROVIDED x 4 Y ARE 50HC-A06 (1 051 ] (377] 6 2 1/2 ' 1641 DIA POWER SUPPLY KNOCKOUT 1 SELECT EITHER 3/4. OR 1/2' FOR POWER. DEPENDING ON WIRE SIZE C10223 Fig.1- Dimensions 50HC 04-06 22